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Abstract This paper presents a new approach for optimizing 
shell structures considering their mid surface design including 
cut-outs. Therefore we introduced a manufacturing constraint 
to the 3D topology optimization based on the density method 
in order to receive an optimized structure without undercuts 
and with a constant wall thickness, so that these structures can 
be manufactured by deep drawing in one step. It is shown that 
introducing cut-outs while increasing the shell thickness can 
improve the performance of shell structures considering their 
stiffness at a constant mass. 
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1 Introduction 
 
Applying 3D topology optimization to continuum structures 
for minimum compliance or minimum stress at minimum mass, 
usually results in complex structures with undercuts and a very 
complicated distribution of the structure’s thickness. Manufac-
turing those structures is often only possible by joining many 
components or by 3D printing. 
By introducing existing manufacturing constraints and an inte-
grated casting simulation, producible casting parts can be ob-
tained by the 3D topology optimization (Harzheim et al 2006, 
Xia et al. 2009, Guest and Zhu 2012, Allaire et al. 2013, Franke 
et al. 2015). 
Considering the mass production costs, it is often more reason-
able to manufacture sheet metal parts by deep drawing. Fur-
thermore deep drawing is a manufacturing process, which al-
lows the forming of very thin walls. In contrast to casting parts, 
the material properties of deep drawn blanks are better, because 
the initial blank has less defects and the yield strength increases 
during the manufacturing process due to the material harden-
ing. 
In order to obtain structures from the topology optimization 
without undercuts and with a constant wall thickness, we im-
plemented a manufacturing constraint to the 3D topology opti-
mization based on the density method. Thereby the variety of 
possible shapes of the mid surface is flexible and not dependent 
on a predefined parametrization. By using a topology optimi-
zation approach, cut-outs can be realized during the optimiza-
tion, in contrast to a shape optimization approach, which is of-
ten used for shell optimizations. 

In this paper topology optimized deep drawing structures are 
compared with optimized topologies without manufacturing 
constraints due to their design and performance. Furthermore it 
is investigated how a thinning or thickening of the structure ef-
fects the optimization result. 
Research on the optimization of shell structures has been done 
in mechanical engineering, but also in civil engineering and ar-
chitecture, e.g. considering roof structures. 
Ansola et al. (2002) combined shape and topology optimization 
for shell structures. A combination of CAD-parameters for the 
mid surface description and the SIMP-algorithm for the identi-
fication of optimal cut-outs is proposed. Their optimization al-
gorithm performs sequentially the shape optimization of the 
mid surface and afterwards the topology optimization. Hassani 
et al. (2013) modified this approach by doing a simultaneous 
shape and topology optimization. The shape of the mid surface 
is parametrized by the control points of NURBS. Thereby the 
node coordinates of the shell mesh are controlled and also the 
shape optimization takes place in the Finite Element Model. 
Both methods highly depend on the parametrization of the mid 
surface. 
Bletzinger and Ramm (2014) perform shape optimization 
based on node coordinates as design variables. They cope with 
large shape modifications without mesh distortion by applying 
a sufficiently large filter radius. 
In topography optimization nodes can be moved in the normal 
direction to the shell surface in order to generate reinforcement 
patterns of beads (e.g. Altair OptiStruct). Thereby often an ar-
tificial stiffening occurs due to the mesh distortion. Cut-outs 
are not addressed with the topography approach. 
Only few works try to use the continuum approach to optimize 
shell structures. The density method is used by Lochner-Al-
dinger and Schumacher (2014) whereby isosurfaces of the ele-
ment densities are extracted as possible mid surfaces. 
An initial approach for a stamping constraint has been imple-
mented in Altair OptiStruct, which introduces a lot of con-
straints to the optimization task in order not to exceed a given 
sum of element densities in the punch direction (Zhou et al. 
2011). 
The work presented in this paper contributes to the Volkswagen 
LEOPARD – Lightweight Optimization and Robust Design 
(Fiebig et al. 2015). This tool also enables advanced topology 
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optimization for casting parts with integrated casting simula-
tion, multimaterial optimization (Falkenberg et al. 2015) and 
addresses acoustic responses (Bertsch et al. 2008). 
 
The paper is organized as follows. Section 2 gives a brief intro-
duction to the deep drawing process. The used continuum to-
pology optimization approach is described in section 3. In order 
to use the continuum approach for the optimization of shells, 
manufacturing constraints have to be implemented. These man-
ufacturing constraints allow the approximation of shells as thin 
walled continuum structures, while maintaining the optimiza-
tion approach. The optimization problem and the basic idea of 
the manufacturing constraints are outlined in section 4. In sec-
tion 5 the implementation of the manufacturing constraint and 
the solution of a convergence issue is discussed. Various ex-
amples are shown in section 6 and 7, whereby the performance 
of the optimization method is examined. 
 
2 A brief introduction to the deep drawing process 
 
Deep drawing is a manufacturing process that is used exten-
sively in the forming of sheet metals (see Fig. 1). Thereby an 
initially flat sheet metal (blank) with a constant wall thickness 
is formed by a moving punch and a fixed die. Usually a blank 
holder is applied to restrain the sheet metal outside the area un-
der the punch in order to impose a stress state dominated by 
tension. Thus a buckling of the sheet metal (wrinkling) during 
the manufacturing due to compressive stresses is avoided. 
 

 
Fig. 1 Deep Drawing: exploded view and cross section with formed 
sheet metal (grey), punch (blue), die (green) and blank holder (red) 

 

  
a) Without undercut b) With undercut 

Fig. 2 Sheet metal cross section 
 
In Fig. 2b) a modified contour of the sheet metal is shown. This 
contour cannot be deep drawn in one step because of the un-
dercut in punch direction highlighted with the red shading. 
Our manufacturing constraint also covers similar manufactur-
ing processes like stretch-forming or embossing. Cut-outs can 
be introduced before or after the deep drawing process, but a 
deep drawing with cut-outs will more likely fail due to tearing 
(fracture of the sheet metal). 

3 Density Method 
 
Our new approach is inspired by the homogenization method 
(Bendsøe 1989). The popular material interpolation approach 
Solid Isotropic Material with Penalization (SIMP) was derived 
from the homogenization method and is applied in our ap-
proach on a voxel mesh consisting of 8-node linear finite ele-
ments. SIMP introduces material with the artificial density 

10 min ≤≤< ixx  and Young’s modulus iE  in element i (see 

equation 1). 0E  is the Young’s modulus of the solid material. 

By increasing the penalty exponent s  over 1.0, intermediate 
densities are penalized and thereby the optimized design rather 
converges to a black&white design, which means that fewer 
elements with intermediate density exist in the optimized re-
sult. 
 

0ExE s
ii =  (1) 

 
By using a gradient based algorithm, our approach is suitable 
for linear or slightly nonlinear load cases. Every objective func-
tion or constraint can be used efficiently, if their sensitivities 
can be calculated analytically. We implemented criteria for vol-
ume, compliance, eigenfrequency, nodal displacement and a 
global stress criterion based on Le et al. (2010). 
To generate a well-posed topology optimization problem, we 
use a sensitivity filter (Sigmund and Petersson 1998) for the 
examples in this paper. The filter’s regularization leads to an 
overcoming of local minima due to checkboards. The filter also 
imposes a minimum length scale. The filtered sensitivity of el-
ement i is defined by the weighted average of the sensitivities 
of elements j, which are inside the neighborhood of element i 
defined by the filter radius r. 
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tance between the element mid points ( )jidist , . 

As optimization algorithms we implemented the Optimality 
Criterion and the Method of Moving Asymptotes (MMA, 
Svanberg 1987) together with the dual optimization method 
(Fleury 1989). 
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4 Aim of topology optimization for deep drawable 
sheet metals 

 
With the presented approach the shape of the mid surface (in-
cluding beads) shall be optimized as well as the topology of the 
mid surface by introducing cut-outs. Thereby deep drawing of 
the optimized structure in one step should be ensured. 
The following optimization problem is solved 
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Input parameters are the maximum volume fraction v , the de-

sired wall thickness b  and the punch direction h . f  and u  
are the global load and displacement vector, K  is the global 
stiffness matrix. The volume fraction is calculated by the filled 

volume ( ) ∑
=

=
N

i
ii·VxV

1
0x  divided by the volume of the design 

space 0V . N  is the number of design elements and 0iV  the vol-
ume of the i-th element, which is the same for every element 
considering the voxel discretization. 
In order to ensure a minimum thickness a common sensitivity 
filter (equation 2) is used, whereby the filter radius should be 
larger than half the desired wall thickness. The maximum wall 
thickness and the avoiding of undercuts and ribs is managed by 
a new manufacturing constraint. 
Some geometrical requirements for deep drawable sheet metals 
like draw radii and draw bead height are not addressed in this 
paper. Additionally there are other important restrictions re-
garding the manufacturing process, which are not considered, 
because therefore an integrated manufacturing simulation is re-
quired. Worth noting are the avoiding of tearings and wrinkles 
of the shell structure, consideration of hardening and thickness 
reduction in the deep drawing process (see Boljanovic 2014, 
Dienemann 2016). 
 
5 New approach – Penalization of the objective’s sensi-

tivities far away from the mid surface 
 
The manufacturing constraints from section 4 can be achieved 
by modifying the sensitivities of the objective function with pe-
nalization functions. An increase of the element densities is 
only allowed near the current mid surface. Thus the mid surface 
can move according to the sensitivities. 

5.1 Calculation of the mid surface 
In Fig. 3 the procedure of deriving the mid surface from the 
voxel mesh is shown on an exemplary cross section. The user 
has to define the punch direction in the input deck. This is the 
direction of the columns, in which the mesh is divided. They 
have the same width w. The mid surface can be found by cal-
culating the average of the element coordinates in the punch 
direction iξ  weighted with the element densities ix . Therefore 

the midpoint of each column is calculated by 
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For one exemplary column the coordinates iξ  are marked as 

grey arrows. The midpoint of each element decides to which 
column the element belongs. The connection of all midpoints 
with distance mξ  represents the mid surface. 

 

 

 
Fig. 3 Calculation of mid surface 

 
As an example a density distribution from an optimization 
without manufacturing constraint is used as initial design: In a 
column we have [ ]7654321=iξ  and [ ]1100011=ix . This 

represents an undercut because of a density concentration at the 
bottom and the top of the column. The mid surface point is cal-
culated according to equation 3 as 4=mξ . Thus the initial mid 

surface is located at the void of the initial density distribution. 
In the following iterations the undercut vanishes and the mid 
surface point can move continuously towards an improved po-
sition. 

ξ

element midpoint punch direction

column boundary ground line

element position point of mid surface  iξ
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5.2 Penalization of objective’s sensitivities 
The objective’s sensitivities far away from the mid surface are 
penalized in order to receive a thin walled structure. Therefore 
the objective’s sensitivities are multiplied with the penalty fac-
tor iP  

 

( )( )ldba
alP

i
i −⋅+

⋅−+
=

/2exp1
)exp(1  (4) 

 
with the abbreviation ( )( ) abal /2/exp2ln ⋅+−= , 

which depends on the distance id  (unit: element edge lengths) 

between the midpoint of element i and the mid surface. 
The parameter b  is the user defined desired wall thickness 
(unit: element edge lengths), a  describes the discreteness of 
the penalty function (see Fig. 4). 
 

 
Fig. 4 Examples of penalty functions 

 
A larger a  ensures that the shell thickness does not exceed b  , 
but slows down the convergence rate. The penalization factor 
is normalized ] [1,0∈iP , in order to maintain the sensitivities 

near the mid surface unmodified and to scale the sensitivities 
far away from the mid surface to zero (for the objective func-
tion compliance, which is used in the current work). 
For minimization problems a penalization means an increase of 
the objective’s sensitivities. For objective functions with nega-
tive sensitivities (e.g. compliance), the absolute value of these 
sensitivities has to be reduced, therefore the penalty factor has 
to be smaller than one, consequently we multiply the objec-
tive’s sensitivities with iP . If the objective’s sensitivities are 

positive (e.g. volume), than the penalty factor has to be larger 
than one, so we use the reciprocal of iP . 
Because the sensitivities of eigenfrequencies, stress criteria or 
nodal displacements do not have a constant sign, they cannot 
be used as objective, but as constraint function. 
This approach prescribes the maximum wall thickness and 
avoids undercuts. Also ribs as thin walled stiffening structures, 
which are perpendicular to a bended basic structure, are 
avoided. Without undercuts, ribs could only occur with their 
height dimension exactly in punch direction. Our approach al-
lows only a thin extension in punch direction, so that ribs can-
not occur. 

5.3 Convergence issues 
The movement of the mid surface at a constant wall thickness 
results in a local accumulation of intermediate dense elements. 
This is shown by Fig. 5. Even if a movement of the mid surface 
towards the force level would improve the objective function 
compliance, the stiffness of the structure temporarily decreases 
due to the lower stiffness of elements with penalized interme-
diate density (image at the right, see Table 1). 
 

  
Fig. 5 Movement of mid surface - density distributions,  

left: example 1, right: example 2 
 

Table 1 Change of compliance due to movement of  
mid surface 

 Normalized compliance,  
example 1 in Fig. 5 

Normalized compliance, 
example 2 in Fig. 5 

s=1.0 1.000 0.694 
s=3.0 1.276 1.279 

 
Hence the combination of  

- penalization of sensitivities for a constant wall thickness as 
described in section 5.2 and 

- the penalization of intermediate densities with 1>s  
results in a lot of local minima (as shown in Fig. 5 – example 
1). In order to overcome local minima with poor performance, 
two additional steps are included in the advanced optimization 
algorithm: 
 
1. The optimization algorithm starts without penalization of 

intermediate densities (penalty exponent 1=s ) until a con-
vergence criterion (referred as ‘convergence criterion 2’) 
is reached. Then the penalty exponent is increased to 3=s  
in order to eliminate intermediate densities. 

 
2. The desired wall thickness b  is not fix during the optimi-

zation process. If ‘convergence criterion 1’ is reached and 
the current desired wall thickness cb  is equal to the final 

desired wall thickness fb , the algorithm increases the de-

sired wall thickness. Due to this increase, elements are ac-
cumulated at the side of the shell, where the sensitivities 
are larger. If convergence criterion 1 is reached and 

fc bb > , the algorithm decreases the desired wall thick-

ness. Because of the temporary increase of the desired wall 
thickness, the shell’s mid surface can move to an improved 
design. 
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5.4 Algorithm 
Fig. 6 shows the algorithm. All the parts in black letters show 
the basic algorithm. The grey parts show the start without pe-
nalization of intermediate densities, the alternation of the de-
sired wall thickness and the increase of the penalty exponent. 
These parts have to be added to cope with the convergence is-
sues. Therefore it is called the advanced algorithm. 
 

 
Fig. 6 Algorithm – black: basic idea, grey: additional effort because 

of convergence issues 
 

5.5 Deactivation of design variables 
Due to the nature of thin walled structures most regions of the 
design space will end up with the minimum element density. In 
order to save calculation time only elements with a density 
larger than the minimum density (inner elements) and elements 
around them within the filter radius (boundary elements) are 
calculated. Thereby the sensitivities of the inner elements are 
calculated and filtered correctly. 
By using the boundary elements in addition to the inner ele-
ments in the optimization algorithm, elements can be reintro-
duced. This approach is implemented into the Method of Mov-
ing Asymptotes by using 0.0min =MMAx  as lower bound of the 
active design variables. The boundary elements are calculated 
with the minimum density although their element density is 
smaller, in order to obtain a well-conditioned stiffness matrix. 
Fig. 7 shows the element deactivation during a minimization of 
the compliance at a maximum volume fraction of 40 % with a 
filter radius ( )lengths edgeelement  1.7=r . As initial design, 

the elements at the middle of the design space were chosen. 
During the optimization, elements at the sides of the fixed end 
are reintroduced and at the middle of the fixed end are deac-
tivated. The final design is the same as without element deacti-
vation. 

 
Fig. 7 Deactivation of design variables 

 
For few boundary conditions or an extensive bearing this con-
cept is reliable. It has to be considered that once a connection 
to a boundary condition or load gets lost, the connection prob-
ably will not be recovered. Therefore it is recommended to use 
a small minimum density (in this paper: 001.0min =x ) and a 

small initial step width in the optimization algorithm. 
 
6 Example 1 – Cantilever Beam 
 
In this section topology optimizations of a cantilever beam (see 
Fig. 8) are performed with and without manufacturing con-
straint. The compliance c is minimized considering a fixed vol-
ume fraction of 6.25 % in the design space. Initially about 
500 000 Elements with edge length 2.5 mm form the design 
space. The rear surface of the structure is clamped, at the front 
bottom edge a line load of q=200 N/mm is applied. The ele-
ments at the line load are defined as non-design space. A sen-
sitivity filter (equation 2) with ( )lengths edgeelement  1.7=r  

and a penalty exponent 3=s  are used. The material is steel 
with Young’s Modulus GPa2100 =E  and Poisson’s ratio 

3.0=ν . The element densities are initialized uniformly in the 
design domain. MMA together with a dual optimization algo-
rithm is used for the design update. 
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Fig. 8 Cantilever Beam – load case and design space 

 
All optimizations are followed by a final conversion to a 
black&white design, where a number of elements with the 
highest densities are recalculated as solid material, so that the 
volume constraint is satisfied. This postprocessing is an inter-
pretation of the final design, which helps to compare the differ-
ent optimized structures. As results the black&white designs 
are evaluated. 
All examples are calculated on a computing node with two Intel 
Xeon E 2650 8-core CPUs and 32 GB memory. 
 
6.1 Optimization without manufacturing constraint 
Without the manufacturing constraint 215 iterations were nec-
essary to meet the convergence criterion, which is the maxi-
mum change of element density per iteration of less than 0.01. 
The wall-clock time was approximately 7 hours. A compliance 
of 15.4 Nm is achieved (see Fig. 9). 
During the last 180 Iterations less than 80 000 elements were 
active, which results in a calculation time of 25 s. This is an 
immense reduction compared to the calculation time with all 
elements (at the first iterations) with a calculation time of 
1200 s. These results were obtained using a direct solver. Using 
an iterative solver the saving of calculation time is not that ex-
cessive. 
 

 
Fig. 9 Optimized Cantilever Beam without manufacturing constraint 

(black&white design) 
 
6.2 Optimization with manufacturing constraint 
The same optimization task as in section 6.1 is performed using 
the manufacturing constraint for thin walled structures. The de-
sired wall thickness is ( )lengths edgeelement  3=fb . This is 

the thinnest possible wall thickness that allows a sufficiently 

accurate representation of a bending stress state with linear vol-
ume elements. The punch direction was chosen as z. 
The convergence criterion 1 is  

- the improvement of the objective function per iteration of 
less than 0.1 % 

- at a simultaneous 
· maximum change of element density per iteration of 

less than 0.1 
· or an increase of the objective function. 

The convergence criterion 2 is the improvement of the objec-
tive function through an alternation of the wall thickness of less 
than 0.1 %. These criteria are used for all following examples. 
The penalization parameter for the manufacturing restriction is 
chosen as 8=a . 
 
Basic algorithm 
In Fig. 10 the converged structure without alternation of the 
desired wall thickness and with a constant penalty exponent of 

0.3=s is shown (basic algorithm as shown in black letters in 
Fig. 6). 
 

 
Fig. 10 “Optimized” Cantilever Beam with manufacturing constraint, 

basic algorithm, thresholded at 1.0=ix  

 
The optimization converges after 732 iterations and the result-
ing structure fulfills all geometrical requirements, so it has no 
undercuts or ribs and a constant wall thickness. But obviously 
that structure with a compliance of 25.9 Nm can just be a very 
bad local optimum caused by the penalization of the sensitivi-
ties. This shows that additional effort is needed to solve the 
convergence issues and reduce the number of iterations. 
 
Advanced algorithm 
Fig. 11 shows the history of the objective function value during 
the optimization with the advanced algorithm. The density 
plots corresponding to the grey dots can be found in Fig. 12. 
As shown in Fig. 11 we start with the desired wall thickness 

( )lengths edgeelement  5=cb . This is chosen, because a larger 

desired wall thickness usually results in a faster movement of 
the mid surface. During the first iterations the compliance in-
creases because the initial design does not fulfill the manufac-
turing constraint. 
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Fig. 11 Optimization history 

 
From Fig. 11 it can also be seen, that the compliance increases 
significantly while increasing the penalty exponent. It can be 
concluded that the structure from Fig. 12d is the best, but be-
cause of the penalty exponent 0.1=s  the structure consists 
mainly of intermediate dense elements. This can be interpreted 
as an optimized shell with variable thickness. In order to obtain 
a deep drawable sheet metal, a structure with constant wall 
thickness is required. By increasing the penalty exponent most 
intermediate dense elements are eliminated, so a shell with con-
stant thickness is achieved and cut-outs are introduced. 
Due to the alternation of the desired wall thickness (iteration 
343-417) the compliance improves by only 1 %, because the 
mid surface moves slightly from Fig. 12e to Fig. 12f. 
 
In Fig. 13 the final design of the shell structure without inter-
mediate densities using the advanced algorithm from Fig. 6 is 
shown. This structure reaches a compliance of 17.4 Nm. In 
comparison to the optimization without manufacturing con-
straint the compliance is 11 % worse (see Table 2), whereby 
the manufacturing by deep drawing of an initially flat blank is 
possible, which is much easier than casting or milling of the 
optimized structure in Fig. 9. 

  
a) Initial densities 

 
b) Iteration 16, thresholded at 1.0=ix  

 
c) Iteration 254, thresholded at 1.0=ix  

 
d) Iteration 303, thresholded at 1.0=ix  

 
e) Iteration 342, thresholded at 1.0=ix  

 
f) Iteration 417, thresholded at 1.0=ix  

 
g) Final black&white design 

 
Fig. 12 Density evolution 
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Fig. 13 Optimized Cantilever Beam with manufacturing constraint 

 
Table 2 Results with and without manufacturing constraint 

Result Fig. 9 Fig. 10 Fig. 13 
Compliance [Nm] 15.44 25.93 17.46 

 
6.3 Structural and mesh refinement 
It is investigated how the optimized design changes while re-
fining the mesh. The mesh is refined by splitting one voxel into 
8 smaller ones. The finest mesh is calculated with symmetry 
conditions using half the design space. After each refinement 
the optimized design of the coarser mesh is used as initial de-
sign for the finer mesh. The desired wall thickness is kept con-
stant at ( )lengths edgeelement  3=fb  and a filter radius of 

( )lengths edgeelement  1.7=r  is used. 
Table 3 and Fig. 14 show that there is a nearly reciprocal rela-
tion between the wall thickness and the compliance as well as 
the mean stress. This is a typical behavior of structures under 
tension/compression and shows that a stress state dominated by 
membrane stresses is maintained during the refinement. 
 

Table 3 Structural and mesh refinement 

Mesh level 1 2 3 
Wall thickness bf [mm] 7.5 3.75 1.875 
Volume fraction [%] 6.25 3.125 1.5625 
Elements in design space 460800 3686400 14745600 
Iterations needed 417 168 333 
Used wall clock time [hours] 10 16 79 
Compliance of full model [Nm] 17.46 39.93 79.75 

 
The coarse mesh level needs the most iterations. This is caused 
by the initial design guess, which is uniform for this optimiza-
tion. In contrast to that the optimizations with the finer mesh 
use the optimum of the coarser mesh as initial design guess. 
Therefore a good mid surface design is already given. 
 

  
Fig. 14 Optimized Cantilever Beam with refinement – half model 

 
6.4 Finding the best wall thickness 
By prescribing the volume and the wall thickness, the area of 
the mid surface is given. Therefore it is investigated which wall 
thickness is the best for the application example. Mesh level 3 
with a volume constraint of 3.125 % is used while different 
wall thickness are prescribed. All optimizations use the opti-
mized design of mesh level 2, shown in section 6.3, as initial 
design. 
Table 4 gives an overview of the optimization results for dif-
ferent wall thickness. 
 

Table 4 Change of desired wall thickness 

Wall thickness fb  [mm] 1.875 2.5 3.125 3.75 4.375 
Filter radius r  [mm] 1.25 1.667 2.083 2.5 2.917 
Iterations needed 225 213 251 224 187 
Wall clock time [hours] 97 86 120 132 125 
Compliance of half 
model [Nm] 21.05 21.44 20.10 19.08 18.71 
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From Fig. 15 it can be seen that by changing the desired wall 
thickness the optimized designs change from a shell structure 
with few cut-outs towards a thin framework structure. In this 
example the compliance of the thickest structure is 12 % better 
than the compliance of the thinnest one. The tendency towards 
an improvement of the compliance by introducing cut-outs can 
be seen. Thereby the wall thickness was increased in order to 
achieve a constant mass. For all optimization results we have 
to remark, that the gradient based approach most probably finds 
local and not global optima. 
Sigmund et al. (2015) showed that closed-wall shell structures 
with variable thickness are stiffer than Michell-like framework 
structures. The current paper shows that structures with cut-
outs are stiffer than closed-wall shell structures considering a 
constant wall thickness. 
In manufacturing, however, the difficulty to deep draw the 
sheet metal increases with the number of holes. So a compro-
mise between easy manufacturing and stiffness has to be made. 
 
6.5 Recalculation with shell elements 
Because the accuracy of the voxel mesh results depends on the 
number of elements across the thickness, the optimized struc-
tures are recalculated with shell elements. Fig. 16 and Fig. 17 
show the compliance of the optimized voxel structures from 
Fig. 15 and the corresponding shell results. It can be seen that 
for all structures there is a loss of performance due to the man-
ual interpretation of the design. A large discrepancy between 
the shell’s and the voxel’s compliance can be seen for the thin-
nest structure. This is caused by the discretization with only 
three voxel elements across the wall thickness. This coarse dis-
cretization leads to an artificial stiffening of the structure. 
 
6.6 Mechanical interpretation of the optimized designs 
In Fig. 18 the cross sections of the optimized sheet metal with 
a wall thickness of 1.875 mm is displayed. It can be seen that 
the sheet metal moves towards the upper and lower design 
space boundary at the clamped end in order to bear the bending 
moment around y with the lowest possible reaction forces. At 
the back end the shell forms a U-channel, while it becomes an 
M-channel at the front end in order to reach an equal stiffness 
across the whole width of the loading edge. Additionally there 
is a bead at the middle of the loading edge, which supports the 
middle of the loading edge at the symmetry plane to take bend-
ing moments around x. This bending moment is also absorbed 
by the fold going along the outer section of the loading edge 
towards the clamped end. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 Optimized Cantilever Beam with increasing wall thickness –  

half model 
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Fig. 16 Structural performance of optimized structures from Fig. 15 
calculated with voxel elements (green) and remodeled shells (blue) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17 FE-results of remodeled shells, a-e correspond with Fig. 16 

 

 
Fig. 18 Cross sections of the thinnest optimized design 

 
6.7 Cantilever beam with point load – variation of 

stamping direction 
In order to show the effect of a changing punch direction, the 
load case was modified. Now a load of F=10 kN is applied at 
an eccentric point on the front surface of the design space as to 
be seen in Fig. 19. No non-design space is defined. All other 
optimization parameter remain the same. 
 

 
Fig. 19 Load case for different punch directions 

 
Fig. 20 shows the optimization results. In Fig. 20a the result 
without manufacturing constraint is shown. This optimized 
density distribution is used as initial design for the optimiza-
tions with manufacturing constraint in order to start with a 
structure, that connects the clamped end of the design space 
and the loading point. 
 
 

 
a) Without manufacturing constraint, c=929.7 Nmm 

 
b) Punch direction x, c=1134.1 Nmm 

 
c) Punch direction y, c=1304.2 Nmm 

 
d) Punch direction z, c=1139.1 Nmm 

Fig. 20 Optimized Cantilever Beam for different punch directions 
 
As expected, the optimization without manufacturing con-
straint results in the best compliance. Depending on the punch 
direction completely different optimized structures develop. 
Here punch directions x and z are far better than punch direc-
tion y. For Fig. 20c the initial design, the used design space and 
the load case are nearly symmetric, therefore also the sensitiv-
ities to both sides of the shell are symmetric and consequently 
the mid surface does not change during the optimization. 
In order to prescribe a preferred camber direction for this punch 
direction, one element row of non-design elements is added at 
the boundary of the design space (red elements in Fig. 21a). 
They are not connected to the design elements, so they do not 
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contribute the structure’s stiffness. They ensure, that the mid 
surface (shown as green shell elements in Fig. 21a) for the pe-
nalization of sensitivities is curved towards the positive y-di-
rection at the upper and lower end of the design space. There-
fore the sensitivities on this side of the shell are less penalized 
and the upper and lower end of the mid surface can move to-
wards the positive y-direction. Consequently the improved 
shell structure in Fig. 21b has a 14 % lower compliance. 
 

 
a) Non-design elements and the mid surface for the  

penalization of sensitivities (last iteration) 

    
b) Optimized Cantilever Beam, c=1104.5 Nmm 

Fig. 21 Punch direction y with prescribed camber direction 
 
The compliance values of all punch directions are nearly the 
same. In a practical design process one of these three results 
will be selected by manufacturing criteria. 
 
7 Example 2 – Quadratic Plate 
 
As a further example a quadratic plate is optimized (adapted 
from Bletzinger and Ramm 2014). The design space cuboid 
(200·200·20 mm) is discretized with voxels of 0.5 mm edge 
length. The objective function is the compliance, the volume 
fraction is constrained to 7.5 %. Fig. 22 shows the load case 
and the design space. A force of F=4000 N is applied at the 
center of the design space. Along the small faces the structure 
is clamped near each corner at a length of 50 mm. The material 
is steel ( GPa2100 =E , 3.0=ν ). A sensitivity filter with the 

radius of ( )lengths edgeelement  1.7=r  and a penalty exponent 

3=s  are used. Only a quarter of the design space is used during 
the optimization using the symmetry planes perpendicular to x 
and y. 
 

 
Fig. 22 Quadratic Plate – load case and design space,  

distances in mm 
 
7.1 Results without manufacturing constraint 
Without the manufacturing constraint the element densities 
were initialized uniformly. 500 iterations were performed, re-
sulting in a compliance of 321.4 Nmm for the full structure (see 
Fig. 23). The wall-clock time was approximately 20 hours. 
Most structural elements are located at the upper and lower 
boundary of the design space. 
 

 
Fig. 23 Optimized Quadratic Plate without manufacturing constraint 

(black&white design) 
 
7.2 Results with manufacturing constraint 
The punch direction was chosen as z, the desired wall thickness 
is 4 element edge lengths, i.e. 2 mm. If the design elements 
were initialized with a uniform density distribution, a symmet-
ric design regarding the z-direction develops. For a thin walled 
structure this is a flat sheet. In order to avoid this symmetry, 
the design space is initialized asymmetrically (see Fig. 24). 
After 605 Iterations and a calculation time of 30 hours a com-
pliance of 544.7 Nmm is achieved, which is nearly 70 % worse 
than the optimized design without manufacturing constraint. 
 

 
Fig. 24 Initial density distribution of the Quadratic Plate with manu-

facturing constraint 
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a) Stress distribution, black&white design 

 
b) Displacement and cross sections, black&white design 

Fig. 25 Optimized Quadratic Plate with manufacturing constraint 
 
8 Conclusion 
 
The presented approach is a powerful possibility for finding 
shell structures manufactured by deep drawing. The manufac-
turing constraints can be fulfilled, but the computational cost is 
an increased number of iterations and a decline of the objective 
function of the optimized design due to the restricted design 
freedom. 
In the examples it has been shown that considering topology 
optimization for shell structures can be useful, because cut outs 
can be used to improve the performance of the component, at 
least for compliance minimization with a single load case. 
For very thin shells the discretization has to be very fine in or-
der to reach realistic results. Therefore the computational effort 
increases with a thinning of the shell. 
Besides the shown application examples, the manufacturing 
constraints for the topology optimization of deep drawable 
sheet metals has been tested for several structures, also with 
multiple load cases. The results are promising, but we have to 
note that the gradient based optimization method will find most 
probably only local optima. 
Further research activities will focus on the improvement of the 
computational efficiency (e.g. adaptive change of objective 
wall thickness to perform optimization in one loop), multishell 
structures, buckling constraints and automation of the conver-
sion to a surface model in order to perform a following shape 
optimization. Also the deep drawing simulation will be imple-
mented in the optimization to ensure the formability of the 
sheet metal without tearings or wrinkles. 
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