Entwicklung eines graphen- und heuristikbasierten Verfahrens zur Topologieoptimierung von Profilquerschnitten für Crashlastfälle

Dissertation zur Erlangung eines Doktorgrades

im

 $\label{eq:continuous} Fachbereich\ D-Architektur,\ Bauingenieurwesen,\ Maschinenbau,\\ Sicherheitstechnik$

der

Bergischen Universität Wuppertal

- Abteilung Maschinenbau -

vorgelegt von
Christopher Ortmann
aus Wittenberg

Wuppertal 2015

Tag der mündlichen Prüfung: 20.05.2015

Berichte aus dem Maschinenbau

Christopher Ortmann

Entwicklung eines graphen- und heuristikbasierten Verfahrens zur Topologieoptimierung von Profilquerschnitten für Crashlastfälle

Shaker Verlag Aachen 2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Wuppertal, Univ., Diss., 2015

Copyright Shaker Verlag 2015 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3746-3 ISSN 0945-0874

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Christopher Ortmann

Entwicklung eines graphen- und heuristikbasierten Verfahrens zur Topologieoptimierung von Profilquerschnitten für Crashlastfälle

Dissertation, Bergische Universität Wuppertal, Fachbereich D – Abteilung Maschinenbau, Lehrstuhl für Optimierung mechanischer Strukturen, Dezember 2014

Kurzfassung:

Die passive Sicherheit gehört zu den dominierenden Auslegungskriterien bei der Entwicklung eines Fahrzeugs. Sie umfasst Sicherheitsmaßnahmen, welche die Folgen eines Unfalls für Fahrzeuginsassen und andere Verkehrsteilnehmer mindern, nachdem ein Unfall unvermeidlich geworden ist. Ein Kernelement ist hierbei die Fahrzeugkarosserie.

Das Werkzeug der Topologieoptimierung könnte hier einen wertvollen Beitrag leisten. Für linear statisch belastete Strukturen existiert eine Reihe von effizienten Methoden für die Topologieoptimierung. Diese können allerdings aufgrund der auftretenden Nichtlinearitäten und der Dynamik nicht bei crashbelasteten Strukturen angewendet werden. Zu den Nichtlinearitäten zählen große Verschiebungen und Rotationen, Kontaktphänomene sowie plastisches und geschwindigkeitsabhängiges Materialverhalten. Weitere in einer Optimierung bei Berücksichtigung von Crashlastfällen auftretende Schwierigkeiten sind Verzweigungspunkte, eine hohe Anzahl von lokalen Optima und die fehlende Möglichkeit, die Sensitivitäten analytisch und damit ohne zusätzliche Funktionsaufrufe zu ermitteln.

In dieser Dissertation wird die *Graphen- und Heuristikbasierte Topologieoptimierung* (GHT) vorgestellt, welche diese Schwierigkeiten adressiert und für die Topologieoptimierung von Profilquerschnitten von crashbelasteten Strukturen verwendet werden kann. In der GHT wird das eigentliche Optimierungsproblem in zwei ineinander geschachtelte Optimierungsschleifen aufgeteilt. In der äußeren Optimierungsschleife verändern aus Expertenwissen abgeleitete Heuristiken, basierend auf Simulationsdaten von Crashberechnungen, die Topologie der zu optimierenden Struktur. In der inneren Optimierungsschleife werden herkömmliche, universelle Optimierungsalgorithmen für die Formoptimierung und Dimensionierung der Struktur verwendet. Die Geometrie der zu optimierenden Struktur wird durch einen mathematischen Graphen beschrieben. Dieser ist nach einer speziell hierfür entwickelten Syntax aufgebaut und ermöglicht durch die flexible Geometriebeschreibung auch komplexe geometrische Modifikationen wie Topologieänderungen. Graphenbasierte Algorithmen werden für die Überprüfung von Fertigungsrestriktionen eingesetzt.

Stichworte:

Topologieoptimierung, Crashauslegung, nichtlinear dynamische Probleme, Heuristiken, Expertenwissen, Graphentheorie

Christopher Ortmann

Development of a graph and heuristic based method for the topology optimization of crashworthiness profile structures

PhD thesis, University of Wuppertal, Department D – Division of Mechanical Engineering, Chair for Optimization of Mechanical Structures, December 2014

Abstract:

Passive safety is one of the dominant design criteria in the development of a vehicle. It includes safety measures which mitigate the consequences of an accident for vehicle occupants and other road users after an accident has become inevitable. A core element of the passive safety is the vehicle body.

The tool of the topology optimization could make a valuable contribution here. For linear static loaded structures there exist a number of efficient methods for topology optimization. However, they cannot be used for crashworthiness structures due to the occurring nonlinearities and the dynamics. The nonlinearities are large displacements and rotations, contact phenomena, as well as plastic and rate-dependent material behavior. Further difficulties arising in an optimization with consideration of crash load cases are bifurcation points, a high number of local optima and the impossibility to determine the sensitivities analytically and therefore without additional function calls.

In this work the *Graph and Heuristic Based Topology Optimization* (*GHT*) is presented which addresses these difficulties and can be used for the topology optimization of profile cross sections of crashworthiness structures. In the *GHT* the actual optimization problem is divided into two optimization loops convoluted in each other. In the outer optimization loop heuristics derived from expert knowledge change the topology of the structure to be optimized, based on simulation data from crash simulations. In the inner optimization loop conventional universal optimization algorithms for the shape and sizing optimization of the structure are used. The geometry of the structure to be optimized is described by a mathematical graph. The graph is generated according to a specially for this purpose developed syntax and also allows complex geometric modifications such as topology changes by the flexible description of the geometry. Graph based algorithms are used for the check of manufacturing constraints.

Keywords:

Topology optimization, crashworthiness, nonlinear dynamic problems, heuristics, expert knowledge, graph theory

Vorwort und Danksagung

Die vorliegende Dissertation entstand während meiner Tätigkeit als Wissenschaftlicher Mitarbeiter im Department Fahrzeugtechnik und Flugzeugbau an der Hochschule für Angewandte Wissenschaften Hamburg und am Lehrstuhl für Optimierung mechanischer Strukturen an der Bergischen Universität Wuppertal.

Zum Gelingen dieser Arbeit haben viele Menschen aus meinem Umfeld beigetragen und ich möchte an dieser Stelle die Gelegenheit zum Dank nutzen.

Meinem Doktorvater Prof. Dr. Axel Schumacher möchte ich ganz besonderen Dank aussprechen. Seine Unterstützung war für mich über den gesamten Zeitraum der Promotion sowohl fachlich als auch menschlich von unschätzbarem Wert.

Prof. Dr. Martin Meywerk von der *Helmut-Schmidt-Universität* in Hamburg möchte ich herzlich für die Übernahme des Zweitgutachtens danken. Seine Ideen und Anmerkungen waren für diese Arbeit sehr hilfreich.

Viele Entwicklungen in dieser Arbeit gehen auf die Vorarbeit von Christian Olschinka zurück, wofür ich mich bedanken möchte.

Im Rahmen des Forschungsprojekts Methodische und softwaretechnische Umsetzung der Topologieoptimierung crash-beanspruchter Fahrzeugstrukturen haben die zahlreichen Diskussionsrunden und Arbeitskreissitzungen zu der Entstehung dieser Arbeit beigetragen. Danken möchte ich allen Beteiligten. Prof. Dr. Lothar Harzheim, Mathias Brass, Norbert Schulte-Frankenfeld, Dr. Heiner Müllerschön, Alexander Frederic Walser und Dr. Martin Bernreuther haben mich mit Anregungen und Fragen bei der Erstellung dieser Arbeit unterstützt.

Katrin Weider sowie meinen Kollegen Robert Dienemann und Dominik Schneider vom Lehrstuhl für Optimierung mechanischer Strukturen danke ich für das Korrekturlesen und für die daraus entstandenen Anregungen.

Dank gilt meiner Mutter, die meine englischsprachigen Veröffentlichungen und Präsentationen korrigiert hat.

Besonders danken möchte ich meiner Ehefrau, Christine Ortmann, die mich in jeder Phase der Promotion unterstützt hat und mich trotz Fachfremdheit bei strategischen Entscheidungen zur weiteren Ausrichtung meiner Forschungen beraten hat.

Wuppertal, im Dezember 2014

Christopher Ortmann

Inhalt

1	Einleitung	1			
1.1	Problemstellung und Motivation				
1.2	Konzept der Optimierungsmethode und Aufbau der Dissertation	2			
2	Strukturoptimierung in der Auslegung von crashbelasteten				
	Fahrzeugstrukturen	5			
2.1	Auslegung von Crashstrukturen in Fahrzeugen	5			
	2.1.1 Aufgaben von Crashstrukturen	5			
	2.1.2 Typische Crashlastfälle und Auswertekriterien	8			
	2.1.3 Besonderheiten der Crashsimulation	10			
2.2	Grundlagen der Strukturoptimierung	14			
	2.2.1 Begriffsdefinitionen	14			
	2.2.2 Arten der Strukturoptimierung	16			
	2.2.3 Mathematische Formulierung eines Optimierungsproblems	18			
	2.2.4 Einordnung von Optimierungsalgorithmen	18			
2.3	Herausforderungen bei der Optimierung crashbelasteter Strukturen	23			
2.4	Stand der Technik zur Topologieoptimierung von crashbelasteten Strukturen	25			
	2.4.1 Ground Structure Approach	28			
	2.4.2 Hybrid Cellular Automaton	30			
	2.4.3 Equivalent Static Loads	32			
3	Geometriebeschreibung durch mathematische Graphen	35			
3.1	Eigenschaften von Graphen	36			
3.2	Verwendete Graphensyntax	39			
3.3	Algorithmen zur Überprüfung von Fertigungsrestriktionen	44			
3.4	Algorithmus zur Bestimmung der Bauraumgrenzen	47			
3.5	Softwareumsetzung	48			
4	Heuristiken für die Strukturoptimierung von crashbelasteten Strukturen.	51			
4.1	Heuristiken zur Topologieänderung	52			
	4.1.1 Heuristik "Entfernen unbelasteter Wände"	52			
	4.1.2 Heuristik "Abstützen sich schnell deformierender Wände"	57			

	4.1.3 Heuristik "Ausgleichen der Energiedichte"	64
	4.1.4 Heuristiken "Ausnutzen des Deformationsraums Zug / Druck"	68
	4.1.5 Heuristik "Entfernen kleiner Kammern"	73
4.2	Heuristiken zur Form- und Wanddickenänderung	77
	4.2.1 Heuristik "Glätten der Struktur"	77
	4.2.2 Heuristik "Skalieren der Wanddicken"	78
5	Methode der Graphen- und Heuristikbasierten Topologieoptimierung	81
5.1	Funktionsweise der Optimierungsmethode	81
5.2	Ablauf der äußeren Optimierungsschleife	84
5.3	Ablauf der inneren Optimierungsschleife	87
	5.3.1 Generierung von Dimensionierungsvariablen basierend auf Wanddicken	89
	5.3.2 Generierung von Formvariablen basierend auf Positionen von Wänden	90
	5.3.3 Generierung von Formvariablen basierend auf Krümmungen von Wände	n94
	5.3.4 Bestimmung der maximalen Anzahl von Funktionsaufrufen	94
5.4	Möglichkeiten und Grenzen der Optimierungsmethode	95
5.5	Softwareumsetzung	96
6	Darstellung der Effizienz der Methode anhand praktischer Anwendungen.	98
6.1	Anwendungsbeispiel 1: Schwellerausschnitt	99
	6.1.1 Anwendungsbeispiel 1a: Minimierung der Reaktionskraft	102
	6.1.2 Anwendungsbeispiel 1b: Minimierung der Intrusion	109
	6.1.3 Anwendungsbeispiel 1c: Minimierung der Masse	113
6.2	Anwendungsbeispiel 2: Rahmenstruktur	118
	6.2.1 Anwendungsbeispiel 2a: Minimierung der Verschiebung	120
	6.2.2 Anwendungsbeispiel 2b: Minimierung der Verschiebung mit fixer äußer	er
	Kontur	124
	6.2.3 Anwendungsbeispiel 2c: Minimierung der Beschleunigung	128
6.3	Anwendungsbeispiel 3: Schweller in einem Gesamtfahrzeug	134
7	Zusammenfassung und Ausblick	143
Lite	raturverzeichnis	145

Abkürzungs- und Symbolverzeichnis

Abkürzungen

ASCII American Standard Code for Information Interchange

CAD Computer Aided Design
CAE Computer Aided Engineering
ESL Equivalent Static Loads

FE Finite Elemente

FEM Finite Elemente Methode

GHT Graphen- und Heuristikbasierte Topologieoptimierung

GRAMB Graph based Mechanics Builder HCA Hybrid Cellular Automaton

SIMP Solid Isotropic Material with Penalization

TOC Topology Optimizer for Crashworthiness structures
AbsWän Heuristik Abstützen sich schnell deformierender Wände

AusEne Heuristik Ausgleichen der Energiedichte

DefDru Heuristik Ausnutzen des Deformationsraums Druck DefZug Heuristik Ausnutzen des Deformationsraums Zug

EntKam Heuristik Entfernen kleiner Kammern EntWän Heuristik Entfernen unbelasteter Wände

Lateinische Zeichen

d Beschleunigungsvektorc Schallgeschwindigkeit

d Verschiebung oder Entfernung

 $egin{array}{lll} ar{d} & & & & & & & & & & \\ \hline d & & & & & & & & & \\ \hline D & & & & & & & & & \\ \hline D & & & & & & & & & \\ \hline E & & & & & & & & \\ \hline E & & & & & & & & \\ \hline F & & & & & & & & \\ \hline G & & & & & & & & \\ \hline F & & & & & & & \\ \hline G & & & & & & & \\ \hline G & & & & & & & \\ \hline G & & & & & & & \\ \hline G & & & & & & & \\ \hline G & & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & & & & \\ \hline G & & & \\ \hline G & & & & \\ G & & & & \\ \hline G & & & & \\ G & & & & \\ \hline G & & & \\ \hline G & & & & \\ G & & & & \\ \hline G & & & \\ \hline G & & & & \\ \hline G & & & & \\ \hline G & & & \\ \hline G$

<u>K</u> Steifigkeitsmatrix

l Länge m Masse

M Massenmatrix

n_e Index zur Nummerierung von Ecken des Profilquerschnitts der

Struktur

N_e Anzahl der Ecken des Profilquerschnitts der Struktur

n_f Index zur Nummerierung von FE-Knoten

 N_{f,n_w,n_l} Anzahl der FE-Knoten von Wand n_w in Lastfall n_l

 n_{fps} Index zur Nummerierung einer nach bestimmten Kriterien sortierten

Menge von FE-Knotenpaaren

 N_{fps} Anzahl der nach bestimmten Kriterien sortierten FE-Knotenpaare

n_h Index zur Nummerierung von Heuristiken

N_h Anzahl der Heuristiken

n_i Index zur Nummerierung von Iterationen

 n_{ke} Index zur Nummerierung von konkurrierenden Entwürfen

 N_{ke} Anzahl der konkurrierenden Entwürfe n_l Index zur Nummerierung von Lastfällen

N₁ Anzahl der Lastfälle

n_{pe} Index zur Nummerierung von potentiellen Endpunkten bei der Heu-

ristik Abstützen sich schnell deformierender Wände

 N_{pe} Anzahl der potentiellen Endpunkte bei der Heuristik Abstützen sich

schnell deformierender Wände

 n_s Index zur Nummerierung von Schnittpunkten bei der Heuristik Ab-

stützen sich schnell deformierender Wände

N_s Anzahl der Schnittpunkte bei der Heuristik Abstützen sich schnell

deformierender Wände

n_t Index zur Nummerierung von Zeitschritten

 N_{t,n_l} Anzahl der Zeitschritte mit relevanten Ergebnisdaten in Lastfall n_l n_w Index zur Nummerierung von Wänden des Profilquerschnitts der

Struktur

 N_w Anzahl der Wände des Profilquerschnitts der Struktur

 n_{wps} Index zur Nummerierung einer nach bestimmten Kriterien sortierten

Menge von Wandpaaren des Profilquerschnitts der Struktur

 N_{wps} Anzahl der nach bestimmten Kriterien sortierten Wandpaare des

Profilquerschnitts der Struktur

n_{ws} Index zur Nummerierung einer nach bestimmten Kriterien sortierten

Menge von Wänden des Profilquerschnitts der Struktur

 N_{ws} Anzahl der nach bestimmten Kriterien sortierten Wände des Profil-

querschnitts der Struktur

 $ec{p}$ Positionsvektor t Wanddicke

u Innere Energiedichte
 U Innere Energie
 v Geschwindigkeit

 \vec{v} Geschwindigkeitsvektor

V Volumen

Griechische Zeichen

α Deformationsindexν Querkontraktionszahl

 ρ Dichte

 ρ_k Künstliche Dichte

 σ Spannung σ_f Fließspannung

Vektoren werden durch einen Pfeil über einem kleinen lateinischen Buchstaben und Matrizen durch eine Unterstreichung bei einem großen lateinischen Buchstaben kenntlich gemacht.