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Abstract
Numerical simulations are an integral part of today’s product development process.
Analysing and comparing multiple simulation results is a time consuming but neces-
sary step in utilising several results. Thus, it is important to develop methods which
speed up this Comparative Analysis by identifying differences and commonalities in
the results and provide means to visualise possible variances. Furthermore, it is cru-
cial to accurately determine how these variances or similarities are related to each
other.
The so-called Dimensionality Reduction Methods (DRMs) have been used in extract-
ing the underlying structure of variance in simulation results since several years. In
recent years, the need for nonlinear reduction approaches has been shown in several
applications. One widely used analysis method called Difference Principal Component
Analysis (DPCA), which is specifically designed to compute the correlation between
variation in different parts of the simulation results, is, however, based on a linear
reduction approach. The aim of this dissertation is to extend the DPCA with non-
linear Dimensionality Reduction (DR), which has never been done until now.
To achieve this aim, the two underlying steps of the DPCA’s analysis workflow were
modified. For the first step of DR, several established methods of three classes of
generative DRMs have been extended amongst others by importance factors to be
used in this analysis. For the second so-called subtraction step, the new generalised
concept of Difference Dimensionality Reduction was introduced.
Two specific implementations of this general concept were implemented in this work,
which can be combined with the different reduction methods in the first step. The
newly developed methods were thoroughly tested on multiple examples in this work:
Firstly, on artificial examples to test the individual steps in an isolated environment
and secondly on simulation results to evaluate the method’s performance on realistic
data sets. These new approaches were able to accurately determine the correlation
between artificial data sets and provided better results for different parts of a set of
simulation results compared to the state of the art. In the case of a nonlinear relation
between these parts, the superiority over linear approaches was demonstrated in the
evaluation, while underlying linear dependencies were also confirmed by the nonlinear
methods.
With the successful modifications done in this work, the DPCA’s workflow is now
meaningfully applicable to data sets with nonlinear dependencies. While the linear
variant was used in the context of crash simulations for several years, this application
was questionable since it contains many nonlinearities.



The newly developed variants remove this uncertainty, and the evaluation examples
suggest a broad range of possible applications for these new methods, as nonlinearities
can occur in many data sets, resulting for example from topology optimisation or
parameter variation.



Kurzfassung
Numerische Simulationen sind ein unverzichtbarer Bestandteil der heutigen Produk-
tentwicklung. Mehrere Simulationsergebnisse zu analysieren und zu vergleichen ist
ein zeitaufwändiger, aber notwendiger Schritt, um mehrere Simulationen in einem En-
twicklungsprozess zu nutzen. Daher ist es wichtig, Methoden zu entwickeln, welche
solch eine vergleichende Analyse beschleunigen, indem Unterschiede und Gemein-
samkeiten in den Simulationsergebnissen identifiziert, sowie Mittel bereitgestellt wer-
den, mögliche Abweichungen zu visualisieren. Weiterhin ist es entscheidend, zu-
verlässig zu bestimmen, wie diese möglichen Abweichungen oder Ähnlichkeiten zusam-
menhängen.
Sogenannte Dimensionsreduktionsmethoden (DRM) werden seit mehreren Jahren
dazu verwendet, die zugrundeliegenden Strukturen von Streuungen in Simulation-
sergebnissen zu ermitteln. In den letzten Jahren wurde die Notwendigkeit zur Ver-
wendung nichtlinearer Reduktionsmethoden in mehreren Anwendungen gezeigt. Eine
weitverbreitete Analysemethode genannt Difference Principal Component Analysis
(DPCA), welche speziell dazu entwickelt wurde, Korrelationen zwischen Streuungen
auf verschiedenen Bauteilen in Simulationsergebnissen zu ermitteln, basiert hingegen
auf einem linearen Reduktionsansatz. Das Ziel dieser Dissertation ist diese DPCA
durch nichtlineare Dimensionsreduktion (DR) zu erweitern, was bis jetzt noch nie
getan wurde.
Um dieses Ziel zu erreichen, wurden die zwei zugrundeliegenden Schritte des Analy-
seprozesses der DPCA modifiziert. Für den ersten Schritt der DR wurden mehrere
etablierte Methoden aus drei Klassen von DRM unter anderem um bestimmte Impor-
tance Factors erweitert, um in dieser Art von Analyse verwendet zu werden. Für den
zweiten, den sogenannten Subtraktionsschritt, wurde das neue generalisierte Konzept
der Differenz-Dimensionsreduktion eingeführt. Zwei spezifische Umsetzungen dieses
allgemeinen Konzepts wurden in dieser Arbeit realisiert, welche mit den verschiede-
nen Reduktionsmethoden aus dem ersten Schritt kombiniert werden können.
Die neu entwickelten Methoden wurden in dieser Arbeit ausgiebig auf mehreren
Beispielen getestet. Zuerst auf künstlichen Beispielen, um die einzelnen Schritte in
einer isolierten Umgebung zu testen, und anschließend auf Simulationsergebnissen,
um die Leistungsfähigkeit der Methoden auf realistischen Datensätzen zu evaluieren.
Diese neuen Ansätze waren in der Lage, Korrelationen in künstlichen Datensätzen ex-
akt zu bestimmen und ergaben bessere Ergebnisse auf verschiedenen Bauteilen einer
Schar an Simulationsergebnissen als der aktuelle Stand der Technik.
An dem Fall eines nichtlinearen Zusammenhangs zwischen Bauteilen wurde die Über-
legenheit gegenüber linearen Ansätzen demonstriert, während bestehende lineare
Zusammenhänge durch die nichtlinearen Methoden bestätigt wurden.



Mit den erfolgreichen Modifikationen, welche in dieser Arbeit durchgeführt wur-
den, ist der Analyseprozess der DPCA nun sinnvoll auf Datensätze mit nichtlinearen
Abhängigkeiten anwendbar. Obwohl die lineare Variante seit vielen Jahren im Kon-
text von Crash-Simulationen verwendet wurde, war diese Anwendung fragwürdig, da
diese Simulationen viele Nichtlinearitäten enthalten.
Die neu entwickelten Varianten helfen diese Ungewissheit zu entfernen und die Evalu-
ationsbeispiele legen ein breites Spektrum an möglichen Anwendungen für diese neuen
Methoden nahe, da Nichtlinearitäten in vielen Datensätzen auftreten können, zum
Beispiel in Ergebnissen aus Topologieoptimierungen oder Parametervariationen.
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1 Introduction
Numerical simulations are nowadays taking a key role in product development, where
they are utilised to speed up development cycles and improve overall safety. In the
automotive industry for example, this is achieved by replacing time and resource
consuming physical prototypes and tests by simulating virtual experiments, which
are not only cheaper in both ways, but can provide unique insights as well. That is
especially the case for the application of crash applications, where prototypes cannot
be re-used and measurements cannot be repeated easily. The more physical tests are
replaced by virtual ones, the more important the understanding of these simulation
and their results becomes. To get a better understanding, engineers need to analyse
the simulations and compare them with each other, in other words, perform what is
known as a Comparative Analysis.
Technical advances in information technologies over the last decade have been an en-
abler for both: An inclining number of calculated simulations and an increased level
of detail in the individual simulation result as well. While the ever-faster accelerating
development cycles lead to an increasing need to analyse and understand the gener-
ated simulations at an even faster pace, the greater number of simulation results and
the more detailed results make this task even more difficult.
As a consequence, a number of methods, tools and software solutions have been de-
veloped in recent years to assist with this crucial task. Some of them focus on certain
aspects of a single simulation, such as individual solving time or specific performance
thresholds. Others focus on multiple simulations, which are related to each other,
such as different variants of the same car under similar load cases. For the analysis
of such sets of simulation results, the so-called Dimensionality Reduction Methods
are becoming increasingly popular, in part because they calculate a low dimensional
representation of the results, that allow analysts to get an overview over many simu-
lations at once.
One of these reduction methods is the so-called Difference Principal Component Anal-
ysis (DPCA), which is implemented in the commercial software DIFFCRASH and
used by a broad customer base all over the world. The basic idea is to apply a Prin-
cipal Component Analysis on different parts of the simulation, in order to determine
two things: First the number of important effects acting on these parts and second
the peculiarity of the individual effects. In a unique additional step these effects
are then correlated to statistically identify or validate dependencies between different
parts.
Though the procedure can be applied to the results of many simulations, it is most
commonly used to help engineers in the discipline of analysing crash load cases, which
show a lot of nonlinearities. These nonlinearities can for example originate from large
deformations, velocity dependent behaviour, nonlinear material properties, failure



2 1 INTRODUCTION

conditions and contact phenomenons. While this approach is used successfully by
several car manufacturers in automotive engineering worldwide for several years, the
underlying concept is linear Dimensionality Reduction and therefore could be ques-
tioned in the context of nonlinear crash simulations. In recent years, many nonlinear
Dimensionality Reduction Methods have been developed and some of them are already
applied to crash test simulation results. This raises the central research questions of
this dissertation:

How can the basic concept of the DPCA be extended to a certain category
of nonlinear methods and which functional differences separate these new
methods from the linear approach?

The aim of this dissertation is to answer these questions, which is done in the follow-
ing steps:
Initially, Chapter 2 begins with giving a more detailed introduction into the Compar-
ative Analysis. The important aspects of this analysis are elaborated to show where
the differences in the established approaches lie. This summarises the state of the art
and highlights the gap in the existing research.
Next, the technical topic of Dimensionality Reduction is addressed in Chapter 3 and
its subsections. A certain level of detail is needed, in order to introduce the under-
lying models of the various methods and their differences. Thus, after some common
terms are introduced, the base models of several methods are explained in dedicated
subsections followed by the modifications which were performed in this thesis. With
these modified base models introduced, everything is in place to motivate and then
describe the further steps.
Extending on these introductions, Chapter 4 firstly explains the concept of DPCA
in detail. Secondly, it shows, how this concept was generalised to the new Difference
Dimensionality Reduction and how this derived concept was extended to two nonlin-
ear difference approaches.
The performances of these new approaches are evaluated and shown in Chapter 5,
starting with results for artificial manifold examples and continuing with examples
for simulation results. The artificial examples help to measure the exact performance
in controlled environments while exploring various aspects in detail. The simulation
result examples showcase the performance on real data and have increasing complex-
ity resulting in the practical application.
Finally, the results for the given examples as well as other findings are summarised
and critically discussed in Chapter 6, before concluding with an outlook on possible
future work.



2 Comparative Analysis
This chapter explains important aspects of a Comparative Analysis in the context
of simulation results. The underlying ideas of established approaches are introduced
and their differences are explained. Based on these existing approaches, the need for
the research conducted in this thesis is highlighted.

2.1 Wording and Usage
The term Comparative Analysis (CA) originates from the field of literature analysis,
where it defines a written text to “compare and contrast two things: Two texts, two
theories, two historical figures, two scientific processes, and so on. [It is] about two
similar things that have crucial differences [ ... ] or two [ ... ] things that have crucial
differences, yet turn out to have surprising commonalities”, see [Wal98].
In the context of simulation results, a CA is not necessarily a written text, but
any visual representation highlighting the differences and commonalities between at
least two and possibly a large data set of simulation results. The wording Compara-
tive Analysis is used in the context of simulation results amongst others in [GIT14],
though the objective to find differences and commonalities in simulation results, has
been around for several years, see for example [TM03] and [AGHH08].
In order to compare and contrast two data sets, analysts can compare each single
value in one of these data sets with its best equivalent in the other. But the model
size of the discretised geometry used in modern simulations has been growing since
several years [BFG05]. Today’s simulation results often contain millions of elements
or nodes [MCR+18] and several physical quantities or post values, which are defined
on these elements, such as nodal displacements or element strains [Sch20]. This huge
dimension makes a manual value-by-value comparison infeasible. And it gets even
more cumbersome for large sets with many simulation results, where this comparison
would have to be done for all possible combinations. Since the number of conducted
simulations in industry has been increasing [RBG+16], these sets may get even larger
in the future. Thus, an alternative for this exhaustive approach is needed.
Automated evaluation processes in industry often rely on a subset of extracted key
values or measurements, e.g. the Head Injury Criterion (HIC) [Hen98] or the Occu-
pant Load Criterion (OLC) [KGE08]. The advantage of analysing such criteria is,
that they are standardised and thus easily comparable and also transferable to other
tests. The disadvantages include the possibility to miss certain behaviour or effects, if
no measurements are defined for these effects. For example, an insufficient modelled
contact might go unnoticed if only the HIC is evaluated. Furthermore, these simple
time series or even scalar values often fail to capture the structure of the given data
set.
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An alternative to extracting a few values is to take all values in the region of interest
and calculate a representation, which is understandable by the person conducting
the analysis. One possibility is to compute the differences or variance for the values
among the simulation results and visualise this range as a fringe plot on the geometry
of the model, see e.g. [TM03] or [WB12]. While this approach can help to identify
areas in the region of interest, where the values are similar or different, the structure
of possible variation or scatter might be captured insufficiently.
Another possibility is to reduce the dimensionality of the problem, meaning to re-
duce the large number of quantities to fewer but still as meaningful values. This
so-called Dimensionality Reduction approach [LV07] has already been used in the
analysis of simulation results for several years [TM03], [Bel03],[MT05]. Recent ad-
vances [BGG16], [IT16], [Die19], [KGS20], [ITMHG20] in utilising this approach fur-
ther underline the potential of these methods.
One particular approach is implemented in the DIFFCRASH software and is used in
a variety of publications and applications [TNNC10], [EKM+13],[BBT13], [Oka15],
[BST15],[Oka17], [MCR+18], [OOB19], [MSJ20].

2.2 Existing Approaches
The different existing approaches using Dimensionality Reduction in an analysis vary
in two aspects: First, the underlying method, which is used to perform the reduction,
and second, how the outcome of the reduction is utilised in the analysis. The differ-
ences in the reduction methods themselves will be discussed in detail later in Chapter
3, for this section it is only important to mention, that all methods are either linear
or nonlinear, see Section 3.1 for more details. To explain the differences, in how the
result is utilised in an analysis, it is important to first abstract the analysis process.
The base principle of utilising Dimensionality Reduction in a Comparative Analysis
can be roughly described in three steps: The data set is preprocessed, then the re-
duction is applied and finally some postprocessing is performed to extract knowledge
from the given representation. For example, preprocessing could be normalisation of
the data, and postprocessing could include clustering or rule mining. Though the
workflow visualised in Fig. 2.1 is a strong simplification, the abstraction helps to
compare different approaches.

Data Preprocessing Dimensionality Reduction Postprocessing

Figure 2.1: Generic workflow of Dimensionality Reduction in a Com-
parative Analysis. This general concept is applicable to most analysis
workflows and a similar representation can be found in [BGIT+13].

In [MT08] a linear technique was used for the Dimensionality Reduction step and
afterwards the simulations were clustered according to the new low dimensional val-
ues in the postprocessing step. This concept of “spectral clustering” [BGIT+13] was



2.2 Existing Approaches 5

extended to several nonlinear reduction approaches in the second publication. The
aim of these clustering investigations is to identify instabilities and bifurcations in
the data by analysing the presence of clusters in the nodal displacements. The inves-
tigation in [BGIT+13] has shown that the nonlinear methods perform better in this
task than the linear variants.
In [GIT15] and [IT16] the Dimensionality Reduction is used to enable analysts to ex-
plore large data sets of simulation results. This means that the low dimensional values
are used to provide a visual representation for multiple results and to identify and
select interesting candidates to be viewed in the original dimension. Furthermore,
the methods help to traverse the different sample points in a meaningful order as
well as understanding the so-called “deformation shapes” [IT16]. These deformation
shapes refer to the different kinds of variation in the nodal displacements of the sim-
ulation results, e.g. buckling or torsion. Both publications provide convincing results
for nonlinear approaches and [GIT15] explicitly shows the superiority compared to a
linear approach. This comparison was extended to an additional nonlinear method
in [KGS20].
In [DWHS16] and [Die19] the Dimensionality Reduction is used for knowledge gener-
ation. More precisely, the postprocessing step is the so-called “rule mining” [Die19],
where decision trees are used in order to find relations between specified input vari-
ables of the simulations and the newly computed low dimensional values of the sim-
ulation results. Furthermore, this workflow performs a novel preprocessing in which
the internal energy of the simulations’ parts is mapped to simpler regression shapes
such as curves or planes. This preprocessing has two effects: Firstly it enables a
comparison of parts with different geometries and secondly it renders the reduction
step nonlinear.

The focus of this work is on a certain type of analysis, which was first published
in [TNNC10], where the correlation between scatter on different parts of a car are
related to each other within a set of simulation results. This process called Difference
Principal Component Analysis (DPCA) is in detail explained in Section 4.1. In this
specific use case, the generic workflow is extended by a second input data set as well
as an additional step of what is labelled as Difference Dimensionality Reduction in
this thesis. In a first step, the Dimensionality Reduction is applied to the first data
set “A” in order to get the low dimensional values. These low dimensional values are
then “subtracted” [TNNC10] from the second data set “B” to determine the correla-
tion of the two. This process is depicted in Fig. 2.2 and referred to as the Extended
Workflow (EW) in this dissertation.
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Data A Preprocessing Dim. Reduction

Data B Preprocessing Diff. Dim. Reduction Postprocessing

Figure 2.2: Extended Workflow with a second input data set and the
additional step of Difference Dimensionality Reduction

This Extended Workflow is used by several car manufacturers and engineers around
the world, but only a linear reduction method is utilised. All other examples of
Dimensionality Reduction in CA of simulation results mentioned in this section utilise
nonlinear approaches with very convincing findings and often explicit demonstrations
of superiority over linear methods in their respective applications. This indicates
that a nonlinear extension for the Extended Workflow should be investigated, as it
did not exist until this thesis. Before investigating how the theoretical concept of this
Extended Workflow can be expanded to nonlinear methods, the practical requirements
should be revisited.

2.3 Practical Requirements
The practical application of methods for the CA must be considered when discussing
or developing new approaches. These methods are utilised as tools to aid engineers
in developing new designs or improving existing concepts. Hence, these tools should
be tailored to this specific application and its requirements.
First of all, this means, that these methods are to be used primarily by experts in en-
gineering and not necessarily by data scientists. Thus, the underlying methods should
require only as few parameters as possible that are easy to calibrate, since they must
also be applicable by users with a different field of experience than advanced data
analytics.
Second, the methods must be able to handle simulation data, which is usually avail-
able in standard engineering development processes. On the one hand, this means,
that several different quantities or post values are available in the simulation results,
e.g. the nodal displacements or the element strains. Ideally, an analysis method
should be capable of utilising all available post values. With the number of nodes or
elements reaching several million in current simulation models and several computed
post values for each of these elements at all states, this means, that the analysis ap-
proaches need to be able to process very high dimensional data.
On the other hand, the number of available samples is usually small compared to
this high data dimension. While the number of elements can exceed several million
values, the number of available simulation results ranges from only two for small in-
vestigations to a few thousand for the analysis of a complete development cycle of a
car. Ideally, an analysis method should be capable of generating meaningful results
for the full range of possible sample numbers. The linear DPCA approach is used for
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a number of years in part because it meets these requirements and it is important to
keep in mind these requirements in any nonlinear modification.

The contents of this chapter can be summarised as following: The process of CA
aims to find the differences and commonalities in a set of simulation results. Dimen-
sionality Reduction has been successfully utilised in this application in the recent
years. Lately, the advantages of nonlinear reduction methods over linear approaches
have been shown for several applications such as spectral clustering or rule mining.
For the specific case of investigating the correlation between different parts of the
simulation, there is no nonlinear extension of the linear DPCA approach in literature
yet. The DPCA’s workflow is different from the other applications in that it does
not only contain a Dimensionality Reduction step, but is extended by an additional
subtraction step, which is referred to as Difference Dimensionality Reduction in this
dissertation. Both steps must be adjusted if this Extended Workflow is enhanced by
nonlinear methods.



3 Dimensionality Reduction
This chapter provides a detailed overview on the first step of the Extended Workflow
for CA as introduced in the last chapter. The first step is the Dimensionality Reduc-
tion (DR) and its properties and capabilities for the analysis of simulation results are
explained in the following sections.

The analysis task can be described as the objective to process a certain input data set
Y ∈ RD×s consisting of s samples of D-dimensional data. The quantities D and s de-
pend on the analysis task and could for example be the number of nodal coordinates,
i.e. three times the number of nodes in each simulation run and the total number of
simulations runs respectively. More detailed examples will be examined later in the
evaluation of Chapter 5; in this section, a simple example of three longitudinal rails
is used first for illustrative purposes only. The example rails shown in Fig. 3.1 and
Fig. 3.2 are extracted at the same state from different runs of the publicly available
Silverado model, developed by the National Crash Analysis Center of the George
Washington University [PRMB09]. The difference between the runs is a variation in
certain material thicknesses, which will be covered in more detail later.

(a) Initial geometry (b) Geometry at 48 ms

Figure 3.1: Position of the left longitudinal rail PID 2000168 in the
Silverado model.

In this case, the node positions for a single state are considered as input data, though
any other value, e. g. plastic strain or internal energy, could be chosen as well as a
different number of states. Since the rails consist of 16 030 nodes, analysing the three
positions per point yields the dimensions D = 48 090 and for s = 3 simulations.
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(a) Thickness 3.11 mm (b) Thickness 2.68 mm (c) Thickness 2.91 mm

Figure 3.2: Deformed left longitudinal rail PID 2000168 of the three
Silverado runs with different thicknesses at 48 ms.

The remainder of this chapter is dedicated to the explanation how this input data set
is processed in DR, and this explanation is structured as following: First, some basic
concepts common to the various approaches are defined. Then, these concepts are
illustrated with a linear example of a Dimensionality Reduction Method (DRM), the
so-called Principal Component Analysis (PCA), and the capabilities and limitations
of this method are explained.
Subsequently, three classes of nonlinear methods with different approaches and ca-
pabilities are introduced. For each of these classes, several different methods are
explained, which incorporate a different property in the respective class. Most of
these methods have a paragraph describing the base approach and another one de-
scribing the adjustments and extensions made in this work specifically for the analysis
of simulation results. The paragraphs describing the base methods simply provide an
overview of previously published work and serve the purpose of providing a consis-
tent notation while summarising the concepts needed in this work. A more detailed
explanation is to be found in the references given. The only exception is the last
method, which has not been published before. The different DRMs inside a class are
introduced in chronological order by the date of their first publication. At the end of
this section, a short recapitulation and an overview is given.
To explain the differences of the DR-classes and highlight their strengths and weak-
nesses, some basic terminology is required.

3.1 Basic Definitions
The following terms are needed to explain the basic concept of DR.

3.1.1 General Terminology

Starting point of a DR process is a given input data set, where each column is
containing one sample.

Definition 3.1 (Original dimension, input data)
With the original dimension D, the high dimensional data set Y ∈ RD×s

Y =: (y1 . . . ys) , with yi ∈ RD ∀ i ∈ {1, . . . , s}
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consisting of s samples is called the input data set.

The main assumption of DR is that the input data set Y is lying on a d-dimensional
manifold, which means that it can be written as the image of a generating function
f and a d-dimensional parametrisation.

Definition 3.2 (Intrinsic dimension, generating function, parameters)
With the so-called intrinsic dimension d ∈ N, the function f : Rd → RD

yi = f (xi) , ∀ i ∈ {1, . . . , s}

is called the generating function and the values xi ∈ Rd are called low dimensional
parameters. For shorter representation, the following matrix notation F is introduced:

X := (x1 . . . xs)
F (X) := ((f(x1) . . . f(xs))) = Y

In practical applications, the exact generating function f and the true low dimensional
parameters are usually unknown. Hence, the goal of DR is to find a low dimensional
representation as an approximation for the true parameters.

Definition 3.3 (Low dimensional representation, DRM)
An approach to obtain a low dimensional representation X̃d ∈ Rd×s with

X̃d ≈ X

is called Dimensionality Reduction Method (DRM).

The results for low dimensional embedding of the rails introduced in the last section
are displayed in Tab. 3.1. This embedding was generated using PCA and the max-
imum intrinsic dimension d = 2 for this approach with s = 3 samples. These values
are obtained by a Singular Value Decomposition of the nodal coordinates of the three
rails, though details are later explained.

Dimension x̃1 x̃2 x̃3
1 6.71 -14.38 7.68
2 3.50 -0.15 -3.35

Table 3.1: Example of an embedding for the three rails, with d = 2
computed by PCA.

John A. Lee and Michel Verleysen defined “qualifications” [LV07] according to which
these DRMs can be categorised and compared to other approaches. Three of their
qualifications or categories are used in this dissertation.
The first qualification is that of linear and nonlinear DRMs.
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Definition 3.4 (Linear or nonlinear DRM [LV07])
A DRM is categorised as linear or nonlinear if the assumed underlying generating
function f (·) is linear or nonlinear respectively.

As foreshadowed in Chapter 1, this dissertation compares several nonlinear methods
with the most popular linear approach of Principal Component Analysis.
The second qualification is that of a generative DRM.

Definition 3.5 (Generative DRM [LV07])
A DRM is classified as generative, if an approximation f̃ : Rd → RD with f̃ (·) ≈
f (·) can also be obtained.

In this work, this category is relaxed in that such an approximation is only required
to be obtained locally, e.g., in the vicinity of certain points and not for the entire
parameter space.

Definition 3.6 (Locally generative DRM)
Given a fixed set of low dimensional points xj ∈ Rd and their vicinities in the param-
eter space B(xj) ⊂ Rd, a DRM is classified as locally generative, if an approximation
f̃ : ⋃

j
B(xj)→ RD with f̃ (·) ≈ f (·) can be obtained.

All approaches covered in the following sections are at least locally generative, since
this property is important for the steps described in Section 3.1.3 and Chapter 4.
The third and last qualification is the one of incremental DRMs.

Definition 3.7 (Incremental DRM [LV07])
A DRM is classified as incremental or layered if the best d-dimensional embedding is
an extension of the best (d− 1)-dimensional embedding. This means ∃ vd ∈ Rs such
that

X̃d =
(
X̃d−1
vT
d

)
∀ d ∈ {1, . . . , D} (3.1)

This is in general not the case for DRMs and raises the question on how to choose an
appropriate d.

3.1.2 Importance Factors

In some DR applications the intrinsic dimension d is known before applying the actual
method. Though this may be the case, for example, in signal processing [CA02], the
dimension is commonly unknown beforehand in the application of crash simulations.
In fact, determining or just getting a satisfactory estimate for d is one of the CA’s
objectives.
To solve this problem, an importance factor is calculated for each dimension of an
embedding. This approach is used with linear DR in the context of the analysis of
crash simulations since several years [TNNC10] and helps to estimate number of di-
mensions and their impact on the data: The higher an importance factor, the more
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relevant the associated dimension is. If an importance factor is small compared to
the others, this dimension can be neglected. This way, the intrinsic dimension can be
over-estimated, then an embedding into a slightly higher dimension calculated, and
then a satisfactory estimate for d deducted by discarding unimportant dimensions.
Truncating an embedding in this way is only valid, if the underlying method is incre-
mental, as explained in the last section, see Eq. (3.1).
The resulting importance factors for the low dimensional representation of Tab. 3.1
is listed in Tab. 3.2. These factors were also generated using PCA and the detail are
explained in Section 3.2.3.

Dimension Importance
1 17.63
2 4.85

Table 3.2: Importance factors for the embedding of the three rails
computed by PCA, here given by the Euclidean norm of the corre-
sponding row.

In this work, the concept of importance factors has been extended to nonlinear DRMs,
although it must be tailored individually to the underlying model. Therefore, the
details are explained in the respective sections. At this point, it should only be noted
that they are calculated, and the explanation of how this is done will be given later.

3.1.3 Visual Representation of Effects

Each direction of the low dimensional embedding can be considered or interpreted as
an underlying effect manifesting in the data. These directions are often also referred
to as “modes” [TNNC10]. The coordinate of one data point for this mode then
describes the magnitude or impact of this effect on a given data point.
These low dimensional coordinates can be used to get an overview of the simulation
result set, for example, to identify outliers or which simulations are close to each other.
For up to three dimensions this can easily be done by visualising scatter plots of these
coordinates, e.g. Fig. 3.3. From this simple plot, it can be seen that the first and the
third simulation are relatively similar, while the second simulation is different, which
is not as easily visible from Fig. 3.2. But since only the d-dimensional embedding is
known, the underlying coordinate system might be obscure and the visualisation of
the underlying effects in the original high dimension D is not trivial.
In the context of DIFFCRASH so-called “virtual simulations” [BST15] are used in an
attempt to visualise these effects. The term refers to files in the same format as the
simulation results, which are not the result of a solving process but are artificially
created for visualisation purposes.
One approach to visualise the underlying effect to which the coordinates are calculated
is to generate a so-called “flipbook” [JBT17]. The data set is sorted according to their
coordinate and then traversed in this order. For example, if the rails are traversed
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Figure 3.3: Scatter plot for the three rails of Fig. 3.2: The two
coordinates of the low dimensional embedding are displayed as x-
and y-axis. The points are coloured like the corresponding rails.

according to their second coordinate, the resulting flipbook is Fig. 3.2. An advantage
of this approach is that it can be done for all DRMs. A disadvantage is that this
becomes cumbersome for large numbers of samples. An even greater disadvantage
is, that this representation mixes several effects, making it useful only for inherently
one-dimensional data sets where mixing does not matter.
Another approach is the visualisation of certain points of the low dimensional data
space in order to illustrate single effects.
Definition 3.8 (Evaluation points)
Given d-dimensional parameters xi with i ∈ {1, . . . , s} and a specific direction 1 ≤
e ≤ d, a point x∗e ∈ {x+

e , x−e } ⊂ Rd with

x+
e :=


0e−1

maxs xe,s
0d−e

 x−e :=


0e−1

mins xe,s
0d−e


is called evaluation point. Here, 0e−1 ∈ Re−1 and 0d−e ∈ Rd−e are the vectors of the
corresponding size, with all entries equal to 0.
An example of low dimensional coordinates with evaluation points is displayed in
Fig. 3.4. If the e-th effect is to be visualised, the minimum and maximum of the
low dimensional parameters belonging to this effect are determined by computing the
points x+

e and x−e and afterwards, these evaluation points are projected to the original
dimension:

y+
e := f

(
x+
e

)
y−e := f

(
x−e
)

A visual example of such evaluation points is given in Fig. 3.4. The evaluation points
are highlighted as triangles and are the maximum or minimum coordinate of the
respective axis.
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Figure 3.4: Scatter plot with evaluation points: Additional to Fig.
3.3, x−1 and x+

1 are the right- and left-pointing triangles, x−2 and x+
2

are the up- and downward-pointing ones respectively.

The first advantage of this method is that such a representation is possible even for
large data sets containing many samples. The second advantage of this representa-
tion is that the effects can be observed relatively isolated. A disadvantage is that
the evaluation points rarely coincide with real data points, i.e. the low dimensional
representation of the given samples. This means first, that it is only applicable to
generative DRMs because only they can generate high dimensional representations of
new low dimensional data points, and second, that these high dimensional represen-
tations are only approximated.
In Fig. 3.5 such virtual simulation results for the rails are visualised. Virtual is re-
ferring to the fact that these results were not obtained by a simulation code, but by
application of the generating function f . The upper row shows the visualisations of
the first effect and the difference is clearly visible in two areas. In the left part of
the rails, where the effect shows the amount of buckling in the simulation, and in the
middle area, where the folding varies. The lower row shows the second effect, which
is more subtle. In one case, the buckling tends to lean to the left, in the other to the
right.



3.1 Basic Definitions 15

(a) Projection f
(
x−1
)

(b) Projection f
(
x+

1
)

(c) Projection f
(
x−2
)

(d) Projection f
(
x+

2
)

Max. node distance in mm

Figure 3.5: Example of virtual simulation results for the evaluation
points in Fig. 3.4: The fringe shows the maximum difference in mm
between the same node in the left and the right subfigures.

With these visual representations of the determined low dimensional effects, the DR
can help engineers in analysing Crash simulations.

3.1.4 Assumptions

In this work, there are a few assumptions made to the input data of the DR, which
are needed by or at least helpful for several methods.
The first assumption is, that the input is assumed to be centralised, which means
that for 1s ∈ Rs the vector with all entries equal to 1 and 0D ∈ RD the vector with
all entries equal to 0 it holds that

Y 1s = 0D (3.2)

If the data would not be centralised, a centralised version Y could be easily computed
by a simple matrix multiplication.

Definition 3.9 (Centring matrix)
With Is being ∈ Rs×s the identity matrix, the matrix Zs ∈ Rs×s

Zs := Is −
1
s

1s1s
T (3.3)

is called the centring matrix.
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The centralised data set Y ∈ RD×s can then be obtained by:

Y := Y Zs (3.4)

For easier notation the overline is skipped in the following by making this assumption.
Secondly, all data sets are assumed to be non-trivial Y 6= 0D×s ∈ RD×s meaning that
at least one entry is non-zero. From an analysis point of view, the data set consisting
of only zeros would be of little interest for any further investigation and is hence not
considered here.
A third restriction is that the data is assumed to be given in the same appropriate
metric units and that no further normalisation is needed. For example, if the data
is comprised of node coordinates, all values are expected to be for example in mm
and not in mixed units. If one coordinate is given for instance in mm and one in km,
the values should be converted prior to the analysis to meet this assumption. There
are some applications [LV07] where the data should be standardised by dividing each
row by its absolute maximum, so that the values are unitless −1 ≤ yij ≤ 1 ∀i, j, but
in this thesis the data is not normalised beyond unit alignment or global scaling of
the complete matrix.
The fourth restriction is that the sampled data is assumed to lie on a single connected
manifold of fixed dimension d. In many practical applications, the intrinsic dimension
of the data may change through the given data set or the single points are separable
into disjunct clusters. In both cases, the sampled data would be located on two
or even more separate manifolds. If such a separation were found, this would be an
important first conclusion from the CA point of view, and the analyst could proceed by
investigating each separable subset independently, thus satisfying the aforementioned
assumption. This last condition is later revisited in Section 5.1.5.2 but should hold
during explanations of the different approaches.

3.2 Principal Component Analysis
The general concepts mentioned in the last paragraphs are substantiated in this sec-
tion by introducing a first concrete approach.

3.2.1 Base Method

The so-called Principal Component Analysis (PCA) is a linear DRM and was intro-
duced in 1933 by Harold Hotelling [Hot33], though the concept was already known
in 1901 [Pea01]. This approach is well established in various fields [WRR03] and it
achieves the reduction by first calculating a Singular Value Decomposition (SVD) of
the input data and then truncating said decomposition [LV07]. An SVD is a repre-
sentation of the form

Y = UΣV T (3.5)
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which exists for each Matrix [LM12] and where with r := rank(Y ) the following holds:

Σ =
(

Σr 0r×s−r
0D−r×r 0D−r×s−r

)
∈ RD×s

Σr = diag (σ1, ..., σr) ∈ Rr×r

U ∈ RD×D orthogonal
V ∈ Rs×s orthogonal

Note that r < s because the data is centralised see Eq. (3.2). Without loss of
generality, it is assumed that the singular values σi of Σ are sorted in descending
order, meaning that σ1 ≥ ... ≥ σr holds. To perform a PCA a suitable d ∈ {1, . . . , r}
is then determined so that the truncated or cut decomposition, which consists of the
first d columns of U and the corresponding rows of V T, provides a good approximation.

Y ≈ Yd := U |dΣr|d(V |d)T (3.6)
An important property of Yd is that it is the optimal rank-d approximation of the data
set Y according to the Euclidean norm ‖ · ‖2, see [LM12]. If the intrinsic dimension is
known and dependency is linear, the user may specify d for the SVD cut-off directly.
A possibility to choose an approximation d̃ ≈ d for an unknown dimension is to
determine the point, where the singular values σi are small compared to the largest
one σ1. For a given 0 < θ < 1, d̃ is chosen as

d̃ := arg min
i

σi

subject to: σi > θσ1

though choosing the right θ depends on the use case and the underlying data, which
can be difficult for some applications. Thus, another possibility to choose d̃ for an
unknown intrinsic dimension d will be discussed in Section 3.2.2.
In terms of a DRM the PCA approach yields the following approximations for the
low dimensional coordinates and the generating function:

X̃ := Σ|dV |Td (3.7)
F̃ (X) := U |d X (3.8)

Since the function F̃ (·) can be stated explicitly, the method is generative and from
the function itself it is obvious, that the method is linear. With the explicit function,
visualising the evaluation points x∗e ∈ {x+

e , x
−
e } can be trivially done by applying the

matrix to vector operation:

F (x∗e) ≈ F̃ (x∗e)
= U |dx∗e

PCA is closely related to Multidimensional Scaling as is shown later in Section 3.4.2.
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3.2.2 Stochastic Interpretation

The PCA is also strongly connected to the stochastic theory, which is explained to
motivate the further steps. The input data Y can be interpreted as s samples of a D-
dimensional random variable. With E {Y } being the expectation of random variable
Y the Covariance matrix for random variable Y [FHT15] is defined as

CY : = cov (Y )
= E

{
(Y − E {Y }) (Y − E {Y })T}

3.2= E
{
Y Y T

}
= 1
s
Y Y T

3.5= 1
s
UΣ2UT ∈ RD×D

This first of all provides means to compute SVD by calculating the Covariance matrix
and then an Eigenvalue Decomposition (EVD) of that matrix. This is especially useful
since covariance matrices are always symmetric and positive semi-definite [FHT15]
and hence easy to decompose. Afterwards, the product of the eigenvectors with the
original data set are computed to determine the missing matrix V :

UTY = UTUΣV T

= ΣV T

Second, this gives meaning to the order of the components and another solution to find
an appropriate approximation d̃, if the true intrinsic dimension d is unknown: The
diagonal matrix Σ contains the complete information about the variance in descending
order. This means that the first dimension best explains the variance in the data.
The next is the dimension that explains the variance second best, and so on.
The total variance can be calculated as the sum of the entries of Σ2 and for a given
value 0 < κ < 1 a suitable d can be found by a variance cut as:

g(l) :=
∑
i<l σ

2
i∑

j σ
2
j

d̃ := arg min
l

g(l) (3.9)

subject to: g(l) > κ

In this approach, κ is the fraction of the total variance that should be preserved in
the low dimensional embedding.
For practical applications, the EVD can also be determined from the Gram matrix
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for random variable Y ,

GY : = cov(Y T)

= 1
D
Y TY

= 1
D
V Σ2V T ∈ Rs×s

since it is containing the same Σ and thus the same information about the variance.
The decomposition is usually done depending on which dimension D or s is smaller.
However, this is only advisable if only the largest eigenvalues are of interest, since it
can be subject to numerical instabilities [LV07].

3.2.3 Application in the Analysis of Simulation Results

With the base concept of the PCA method introduced, the steps of the CA in Section
3.1 can now be explained for this method.
In the application of analysing simulation results, the input data set consists of post
values extracted from a subset of elements at a certain number of states of the sim-
ulation results. One example could be all coordinates for the nodes belonging to a
selected PID at one or more states, another all internal energy values for the ele-
ments in a certain region over all states. This subset of elements will be referred to
as a part, though it could be a fragment or a union of several PIDs as defined in a
simulation. The part data is extracted from all simulation results, if the requested
elements are not present in one of the results, e.g. due to changing geometry, a best
possible approximation is chosen, for example by mapping the changed geometry to
a reference presentation.
Since these subsets can vary in size, the input data is scaled by the square root of the
number of rows D to make different analysis results comparable. This is motivated
by the computation of the Gram matrix:

GY = 1
D
Y TY

=
( 1√

D
Y

)T ( 1√
D
Y

)

Furthermore, in this application, the Gram matrix GY ∈ Rs×s is usually smaller,
than the covariance matrix CY ∈ RD×D, since a part might contain several thousand
elements multiplied by the number of states, but the set of simulation results rarely
exceeds a few hundred samples, so it is more effective to do the EVD of this matrix,
since it is smaller and directly provides the right singular vectors.
As stated before, the low dimensional coordinates are the entries of these right sin-
gular vectors multiplied by the singular values, see Eq. (3.7). This means that each
coordinate direction 1 < i < d, which is stored in the i-th row of X̃, has a Euclidean
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norm of the corresponding singular value σi, since V |Td is a truncated orthogonal ma-
trix. Said singular value is assigned as the importance factor for this dimension, see
Section 3.1.2, since this is the amount of variance explained by this component in the
low dimensional representation.

It is important to note, that the normalised low dimensional coordinates V |d provide
a basis for the effects as well as the original principal components U |d. Since V is an
orthogonal matrix, the columns of this matrix form an orthonormal basis of the Rs

space by definition. This means, that each vector in this space can be defined as a
linear combination of these base vectors, which is especially interesting for the unit
vectors ei ∈ Rs, corresponding to the axes of the canonical base. The coefficients
which reconstruct a vector as a linear combination of an orthonormal basis can be
computed by calculating the scalar products of that vector with the base vectors
[LM12]. In the case of the unit vector ei and the base of V , the products yield the
corresponding row and these scalar products do not change for the first d unit vectors,
if the data is restricted to the first d entries of V , since all missing values would be
multiplied with zeros anyway.
This can be interpreted as categorising an effect not by the affected elements, e.g.
buckling in front of the rail, but in which samples it is occurring, e.g. the mean de-
formation seen in simulations two and three. Here, an effect is identified by a linear
combination of the sample points and it can be visualised by applying the interpo-
lation with the weights vT

i ∈ Rd of this linear combination, which can be verified by
examining the product:

Y vi = UΣV Tvi

= UΣei
= σiui

Normalising the result will eliminate the remaining σi and give the base vector. An
advantage of this representation is that it is usually smaller than the corresponding
base vector ui ∈ RD.
Another benefit of interpreting effects as a linear combination of samples is that it
can be evaluated on all parts, states, and post values for a fixed sample of simulation
results. This means that even though the PCA was only conducted for a single part,
e.g. the coordinates of one longitudinal rail at a certain state, the underlying effect
can be extended to all post values on the entire car at all states by interpolating these
values accordingly. This property is important for the process described in Section
4.1.

3.2.4 Assessment

The linear approach is straight forward and easy to use, since it does not require any
parameters other than the desired target dimension d. The SVD exists for all matrices
and can always be computed, so the truncation will always result in an embedding
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with the desired low dimension. The connection to the stochastic theory provides a
solid foundation and interpretable results as well as meaningful importance factors.
But the simple model also has some undesired properties. As a perfectly linear de-
pendency between the high dimensional coordinates and intrinsic ones is assumed,
the method cannot yield the correct result, if the dependency is nonlinear, i.e. the
data was generated by a nonlinear function F . This typically manifests in the linear
method overestimating the intrinsic dimension and thus the number of underlying
effects. Furthermore, the minimisation of the Euclidean norm can sometimes result
in finding an axis, which is mixing several underlying effects. Additionally, the image
of the generating function F (·) is always the complete subspace, spanned by the base
vectors U . This may overestimate the manifold drastically, especially in the case of
a nonlinear data set, where the manifold could just be a subset of this subspace.

To overcome these drawbacks nonlinear methods can be utilised. There is a vast
range of nonlinear methods available in literature and it is a priori unknown, which
approach will yield the best results for the analysis of simulation results. In fact, the
best method may depend on the use case or even the individual data set.
At the same time, a comprehensive evaluation or even introduction of all methods
would exceed the scope of this thesis. A reasonable overview of different methods
can be found in [LV07], though many new approaches have been invented since this
publication. Nonetheless, John A. Lee and Michel Verleysen started in this publi-
cation to categorise and contrast different approaches, increasing the comparability
of the diverse methods and showing, that most algorithms belong to certain classes.
Three of the most common classes with some example methods are visited in the
following sections: The so-called Local Methods, the Multidimensional Scaling, and
the Nonlinear Mapping approaches.

3.3 Local Methods
In this section the first of the investigated classes of nonlinear DRMs is introduced
as an alternative to the linear method described in the last section.

3.3.1 Commonalities

Approaches which are categorised as a Local Method (LM) [ST02] determine local
neighbourhoods and specific properties about these neighbourhoods. Then a global
low dimensional embedding is calculated, which best preserves all these local proper-
ties.

There are several rules to define the neighbourhood N (yi) ⊂ {1, . . . , s} of a point yi
in a given data set [LV07]. Two of the most popular choices are the ε- and the k-rule.
In the former, the j-th point yj is considered to be in the neighbourhood N (yi), if it
is within a ball B(ε, yi) ⊂ RD with given radius ε ∈ R and centre yi. In the latter,
the j-th point yj is considered to be in the neighbourhood N (yi) of point yi, if it is
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amongst its k-nearest Neighbours (kNN) for a given k. The different LM-approaches
may use varying rules, but all construct the neighbourhood N (yi) for all points and
usually it holds that i /∈ N (yi).
However the neighbourhoods are constructed, afterwards a property is determined
for each of these N (yi). Which specific property is used, depends on the individual
method, but all methods aggregate the local properties in one global alignment matrix
ΦLM ∈ Rs×s. How the data is aggregated is also different for the various approaches
and hence explained in detail in the specific subsections.
Still, this matrix is used for all LM-approaches to solve the problem of determining
the low dimensional coordinates, which best preserve all local properties: The matrix
is aggregated in such a way, that for the ideal coordinates X it holds that:

ΦLMX
T != 0s×d

To make the problem well posed and to prevent trivial solutions, two constraints are
applied [SR00]. First, the resulting low dimensional coordinates should have zero
mean. Second, the new coordinates should have unit covariance.

X1s = 0d (3.10)
XXT = Id (3.11)

With these two constraints in place, the problem can be solved in a least squares
sense by computing an EVD [SR00].

ΦLM =: V ΛV T

The solution are the eigenvectors corresponding to the second to d+1 smallest eigen-
values of

X̃ := (vs−d−1 . . . vs−1)T

since these are the global vectors, which best comply to all local properties. The
eigenvector corresponding to the lowest eigenvalue is discarded since it is assumed to
be the vector 1s, which is an eigenvector to the eigenvalue 0 because of the zero mean
constraint Eq. (3.10). An alternative to the case, where this is assumption is not
met is listed in Section A.1 of the appendix, but since it was valid for all investigated
examples, it is not discussed in detail. This way, LMs construct global low dimensional
embeddings, which best preserve all previously determined local properties.

3.3.2 Locally Linear Embedding

The concept of LM can be explained in more detail with an example. The method
described in this subsection was the first of this class and one of the earliest nonlinear
DRMs in this work. It is the first approach that tries to fit a local description patch
and align everything in one global context.
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3.3.2.1 Base Method

The Locally Linear Embedding (LLE) was first published in 2000 by Sam T. Roweis
and Lawrence K. Saul [RS00]. The idea is to reconstruct each point from its neigh-
bours as best as possible and thus define the data in terms of local neighbourhood
weights. Afterwards a global low dimensional embedding is calculated, which best
preserves these local weights.
An example for preserved local weights is visualised in Fig. 3.6. The intersection of
the dashed and the dotted lines in two dimensions is the best approximation of the
middle point by its two nearest neighbours. The ratio of the two parts of the dashed
line corresponds to the ratio of the weights for the best reconstruction. Said ratio is
preserved in the one dimensional representation.

D = 2

d = 1

Figure 3.6: Graphical example of preserving the weights in a low
dimensional embedding. The continuous line represents the manifold
with three sample points highlighted in the high dimension of D = 2
as well as in the low dimension d = 1. This schematic was motivated
by [LV07].

In LLE the user may specify any rule to construct the neighbourhoods. Once these
neighbourhoods are constructed, the next step of LLE is to compute the weights wij,
which best reconstruct a point yi from its neighbours. This can be formulated as the
following optimisation problem for W ∈ Rs×s:

min
W

ε (W ) :=
s∑
i=1

∥∥∥∥yi − s∑
j=1

wijyj

∥∥∥∥2

2
(3.12)

subject to: wij = 0 ∀j /∈ N (yi)
s∑
j=1

wij = 1 ∀i ∈ 1, ..., s

This problem can be solved in closed form for each point separately as stated in [SR00].
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Since the weights sum to one, the problem for one point yi can be reformulated as:

εi =
∥∥∥∥yi − ∑

j∈N (yi)
wijyj

∥∥∥∥2

2

=
∥∥∥∥ ∑
j∈N (yi)

wij (yi − yj)
∥∥∥∥2

2

=
∑

j∈N (yi)

∑
k∈N (yi)

wijwikGijk

The last term is an entry of the local Gram matrix for the neighbours of point i,
centred onto said point:

Gijk := (yi − yj)T (yi − yk)
With this matrix, the problem of Eq. (3.12) becomes∑

j∈N (yi)
Gijkwik = 0 ,∀k ∈ N (yi) (3.13)

subject to:
∑

k∈N (yi)
wik = 1 (3.14)

In [SR00] the authors propose to utilise this formulation by first solving Eq. (3.13)
without the unit sum constraint and normalising the weights afterwards.
As they state, this poses a problem, if the local Gram matrix is singular or close to
singular, which may be the case, for example, if the number of neighbours is larger
than the intrinsic dimension or the data is not well sampled locally. In these cases, the
authors advice to regularise the equation by adding a small multiple of the identity
matrix prior to solving, with δjk being the Kronecker delta and %i a regularisation
parameter chosen by the user.

Gijk ← Gijk + %iδjk (3.15)

After solving the optimisation problem for all points, in the next step of LLE the cal-
culated weights are fixed and the objective is to calculate low dimensional coordinates,
which best preserve these weights. This can be done by minimising the following cost
function:

min
X

E (X) =
s∑
i=1

∥∥∥∥xi − s∑
j=1

wijxj

∥∥∥∥2

2
(3.16)

subject to: X1s = 0d

XXT = Id

As stated before, this is achieved by an EVD of a global alignment matrix. Here, the
specific alignment matrix ΦLLE is aggregated as

ΦLLE := (Is −W )T (Is −W )
=: V ΛV T
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As for all LMs, the solution for the DR-problem are the eigenvectors corresponding
to the second to d+ 1 smallest eigenvalues of

X̃ := (vs−d−1 . . . vs−1)T

since these are the global vectors, which best comply to all local properties. The
vector corresponding to the smallest eigenvalue is discarded, since it is assumed to
be 1s, which has an eigenvalue of 0 by construction, which is enforced by constraint,
that the weights sum to one, see Eq. (3.13).

1: Construct the neighbourhoods N (yi) of each data point yi
2: Determine the weights that best reconstruct each data point from its neighbours,

minimising the cost in Eq. (3.12) by constrained linear fits.
3: Compute the vectors best reconstructed by the weights, minimising the quadratic

form in Eq. (3.16) by the bottom non-zero eigenvectors of ΦLLE.

Algorithm 3.1: LLE Algorithm. Modified from [SR00].

LLE can also be performed starting from pairwise Euclidean distances. At least for
the two given ε- and the k-rules, the building of the neighbourhoods can be trivially
done from distances as well as from values. In [SR00] the authors showed that the local
Gram matrix can be assembled from the distances and so the weights can be derived
from these values. The further steps do not change afterwards, but the computation
of the pairwise distances can be more efficient than aggregating the full data matrix.
Though the straightforward approach of the LLE makes it quite easy to use, it has
some known drawbacks. The first one being the calibration of the regularisation
parameter. Choosing a suitable %i can be challenging in some applications [KDM10],
since it depends on the magnitude of the values, their distance to each other and the
noise disturbance.
A second drawback was shown in [ZW07], that even if the weights are determined
correctly, with or without regularisation, the embedding can sometimes still yield
wrong embeddings. This is partially because the simple description by a single set
of local weights can sometimes fail to capture the global structure of the data. An
additional drawback can be, that the weights, which best reconstruct a point from
its neighbours are preserved, but the information, whether or not this was a good
approximation, is not carried on to the low dimensional embedding directly, see Fig.
3.7. In this figure, the intersection of the dashed and the dotted lines is the best
approximation of the triangle and the square by the two circles. The triangle can be
approximated perfectly, but the square rather poorly, though the optimal weights to
interpolate them from the circles are the same. The problem is that this is sometimes
beneficial to some extent, but in other cases undesirable.
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Figure 3.7: Graphical example of similar weights, but different qual-
ity., when approximating the square and the triangle with the circles.

Although these known issues exist and affect the performance of the method, some
fundamental concepts of the CA can be demonstrated very well with this first ap-
proach.

3.3.2.2 Extension for Comparative Analysis

The base approach of LLE has a few options, to influence the behaviour of the method
and needed to be addressed, if it is used in an automated analysis of simulation re-
sults.
A first option is the construction of the local neighbourhoods. The k-rule is often used
in literature for simplicity reasons and because it is easier to calibrate for users than
for example the ε-rule, especially for data sets with varying sample density: A ball
with fixed radius ε could enclose too many points in one region and too few in another,
while the kNN can handle these different densities. Such varying sample density can
occur in the analysis of simulation results, as can be seen, for example, later in Sec-
tion 5.2.2. Furthermore, the value of k can often be calibrated automatically which
is crucial for an automated usage. Several methods are proposed in [LV07], though
the user can always select a specific value. A good estimate for k and an expected
intrinsic dimension of d is usually k = 4d+ 2. Thus, in this work a slightly modified
approach close to the k-rule was used. An undirected graph [BM+76] was constructed
in two steps: First, the kNN for each point were determined and undirected edges
between these points inserted into the graph. Second, if the resulting graph was
disconnected, a warning was issued and the shortest edges between connected com-
ponents were inserted until the whole graph was connected. This is closely related
to the assumption of the data lying on a single connected manifold: If the graph is
not connected, this should be reported to the analyst, who must decide whether to
analyse each connected component separately or to proceed with the single graph
with fixed connectivity. The 1-ring neighbours in this amended graph were consid-
ered as the neighbourhood for LLE. Constructing an undirected graph imbues some
degree of symmetry into the method, such that if j ∈ N (yi) than also i ∈ N (yj).
Furthermore, enforcing a connected graph ensures that the unit covariance constraint
Eq. (3.11) does not only affect a subset of the data. This constraint is needed to
make the problem well posed but cannot prevent degenerate solutions in the case in
a disconnected graph.
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The second option to influence the behaviour of the method is the regularisation
introduced in Eq. (3.15). Several publications with different choices for the regular-
isation parameter %i are available, some of which are [SR00], [SR03] and [DSAC10].
The importance of this parameter and its huge impact on the outcome of the method
is discussed, amongst others, in a dedicated paper in [KDM10]. In this thesis, a new
slightly modified version of the approach described in [SR03] was used:

%i,SR03 = ν2

|N (yi)|
tr(Gijk) (3.17)

%i,NEW = ω |N (yi)| tr(Gijk) (3.18)

Here, tr(·) denotes the trace [LM12] of a matrix, |N (yi)| the number of neighbours in
the respective neighbourhood and 0 < ν, ω � 1 are hyper parameters which can be
calibrated for the specific application. Though there are more advanced approaches
available, this one has the benefit of being relatively easy to calibrate: The trace
and number of neighbours already depend on the local neighbourhood, so the hyper
parameter ω can be chosen globally, while the regularisation adapts for each point.
In contrast, choosing one single appropriate % = %i ∀ i directly is not feasible in
practical applications. All examples shown in this work were computed with the
regularisation in Eq. (3.18) and ω = 10−4 for simplicity reasons and because this
value did perform reasonably well on artificial examples. For real applications, the
correct choice of regularisation type and hyper parameters is still a challenge. The
topic of regularisation is re-visited again in Section 3.3.4, where a superior alternative
to this regularisation approach is introduced, so it will not be discussed further here.

Beyond the existing options of the base method, some further extensions are needed
for the successful application in the analysis of simulation results. The importance
factors are a critical component in the CA, as described in Section 3.1.2, but the
base version of LLE has no equivalent to the importance factors of the linear PCA
approach. In fact, the unit covariance constraint Eq. (3.11) enforces all coordinates to
have a similar range, resulting in seemingly equally important dimensions. Therefore,
a new importance measure had to be derived. The base method of LLE was extended
by an additional step to compute such a measure and sort the computed coordinates
accordingly. Both methods, the PCA and LLE, rely on computing an EVD to obtain
the low dimensional coordinates, with one major difference: In contrast to PCA,
where the eigenvectors associated with the largest eigenvalues are of interest since they
are used as importance factors, in LLE the ones for the lowest eigenvalues are most
important. The intuitive idea of utilising the eigenvalues Λ also for the computation
of importance factors is discouraged, because their magnitude and relative difference
may be related to the intrinsic dimension in some cases, but is generally independent
of it, as demonstrated in [SR03].
Instead, a new approach depending on local differences has been developed. The
goal is to make the embedding locally distance-preserving by scaling the individual
directions of the low dimensional coordinates. The goal of LLE is to compute an
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embedding, which best preserves the local weights in a least squares sense. This
means, the residual ri ∈ Rd of the nearest neighbour reconstruction is supposed to
be small, if the LLE succeeded in computing a good embedding.

ri := xi −
s∑
j=1

wijxj = xi −
∑

j∈N (yi)
wijxj

Thus, the following relation holds ∀ 1 ≤ i ≤ s and any α1, ..., αd ∈ R:

xi = ri +
∑

j∈N (yi)
wijxj

⇒ diag (α1, ..., αd)xi = diag (α1, ..., αd) rj +
∑
j

wijdiag (α1, ..., αd)xj (3.19)

Therefore, the scaling in Eq. (3.19) will not affect the preservation of weights in this
case. However, if the method produces large errors, these errors can be amplified by
the scaling. The aim is to determine α1, ..., αd such that:

‖diag (α1, ..., αd) (xi − xj)‖2 = ‖yi − yj‖2 ∀ 1 ≤ i ≤ s, j ∈ N (yi) (3.20)

Squaring these m := ∑
i |N (yi)| terms yields the following system of linear equations:


(x1,1 − xγ,1)2 . . . (x1,d − xγ,d)2

... . . .
...

(xm,1 − xφ,1)2 . . . (xm,d − xφ,d)2



α2

1...
α2
d

 =


‖y1 − yγ‖2

2...
‖ym − yφ‖2

2



A


α2

1...
α2
d

 = b

with A ∈ Rm×d, b ∈ Rm. Using the k-rule, the number of rows m is equal to ks, in
the case of the modified k-rule it is usually slightly greater. This system is solved by
substituting and constraining the variables:

A


µ1
...
µd

 = b s.t. µi ≥ 0 ∀ 1 ≤ i ≤ d (3.21)

In a last step, the values are sorted, such that µπ(1) ≥ ... ≥ µπ(d) and the same
permutation π is applied to the result X̃ of the base method. This yields the scaled
embedding

X̂ := diag
(
µπ(1), ..., µπ(d)

) 1
2


x̃π(1),1 . . . x̃π(1),s

... . . .
...

x̃π(d),1 . . . x̃π(d),s


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where the entries of the diagonal matrix are the new importance factors correctly in
descending order.
The sorting and the resulting permutation could be skipped, by additionally enforc-
ing µ1 ≥ ... ≥ µd ≥ 0 directly in the system of Eq. (3.21), but the following reasons
discourage this approach:
One reason is that the sorting approach can be used to mitigate instabilities in the
solving process of the EVD. The order of these eigenvalues can be shuffled due to
their magnitude being very close to each other and to zero. Furthermore, [SR03] has
shown, that there can be more than d+ 1 small eigenvalues which can also be impor-
tant. The sorting approach could first overestimate d, then compute the importance
factors and discard unimportant dimensions. This way, potential shuffling can be
corrected afterwards possibly improving the performance of the DRM.
Furthermore, the usage of these scaling factors as importance factors is justified be-
cause they share an important property with the linear approach in that they are
proportional to the amount of variance, they are inducing in the low dimensional em-
bedding. This can be seen from the low dimensional Covariance matrix of the scaled
coordinates:

X̂X̂
T =

(
diag

(
µπ(1), ..., µπ(d)

) 1
2 X̃

)(
diag

(
µπ(1), ..., µπ(d)

) 1
2 X̃

)T

= diag
(
µπ(1), ..., µπ(d)

) 1
2 X̃X̃

Tdiag
(
µπ(1), ..., µπ(d)

) 1
2

= diag
(
µπ(1), ..., µπ(d)

)
Since X̃ is constructed using eigenvectors of a symmetric matrix, it has a unit covari-
ance, see Eq. (3.11), which is scaled according to the importance factors.

Finally, a last extension is needed for the visualisation of effects. As introduced in
Section 3.1.3 this visualisation is based on the projection of evaluations points. The
determination of the evaluation points x∗e ∈ {x+

e , x
−
e } does not change since they are

defined in the low dimensional representation. An extension is needed for approxi-
mating the projection of these points. LLE is calculating an embedding, preserving
local weights, which means that for the same wij the following holds:

F (xi) = yi ≈
∑

j∈N (yi)
wijyj =

∑
j∈N (yi)

wijF (xj)

xi ≈
∑

j∈N (yi)
wijxj

This property was now used to approximate the unknown projection of the evaluation
point using a method introduced in [Fra16] and fittingly referred to as Local Linear
Interpolation (LLI) in [Hah16]. The LLI was motivated by LLE, but first introduced
in [FZGK14] in the context of Isomap, which is introduced later. First the neigh-
bourhood N (x∗e) is determined for the evaluation points, e.g. by computing the kNN.
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Afterwards the weights wej, which best reconstruct the point from its neighbours, are
determined in the low dimensional space.

min
we

εe =
∥∥∥∥x∗e − ∑

j∈N (x∗
e)
wejxj

∥∥∥∥2

2

subject to:
∑

j∈N (x∗
e)
wej =1

Subsequently, this linear combination is applied in the high dimensional space and
therefore called local linear interpolation.

F (x∗e) ≈
∑

j∈N (x∗
e)
wejyj (3.22)

One possible variation is to calculate the single nearest neighbour xj of the evaluation
point x∗e and replace the neighbourhood N (x∗e) by N (xj) for the interpolation and
weight determination. This can be motivated by the fact that the preservation of the
local weights is only guaranteed for the given neighbourhoods. However, this raises
problems if, for example, the single nearest neighbour is not uniquely determined.
Additionally, points that are relatively far away in the high dimensional space can
be closer in the low dimensional embedding. These newly discovered similarities,
reflected in the low dimensional proximity, would be ignored in this case. Thus, the
kNN of the evaluation point x∗e are used in this work, assuming, that the local weights
are approximately preserved for these new neighbourhoods as well. Since the analyst
is only interested in a visual approximation, the projection does not need to be exact.

3.3.3 Local Tangent Space Alignment

In this section a second LM is presented to overcome some of the drawbacks of the
first method.

3.3.3.1 Base Method

The Local Tangent Space Alignment (LTSA) approach was first published in 2004 by
Zhen-yue Zhang and Hong-yuan Zha [ZZ04]. LTSA extends the basic idea of LLE to
fit the data locally and then align globally. But instead of preserving local weights,
LTSA preserves the local tangent spaces in a global embedding.
A visual example for preservation of approximated tangent spaces is given in Fig. 3.8.
In this figure, the dashed line is the approximation of the one dimensional tangent
space, spanned by the middle point and its two nearest neighbours. This tangent
space is defined by the relative position of the points in this subspace and preserved
in the one dimensional embedding. In contrast to Fig. 3.6, the middle point is
included in the calculation of the tangent space and not only approximated by its
neighbours.
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D = 2

d = 1

Figure 3.8: Graphical example of preserving the tangent space in
a low dimensional embedding. The continuous line represents the
manifold with three sample points highlighted. This schematic was
motivated by [LV07].

In the first step of LTSA, the complete neighbourhood N (yi) is determined for each
point yi, by calculating the neighbourhood N (yi) = {i1, ..., ik} based on the kNN
and including the index i of the point itself. Then, the local data matrix Yi for the
complete neighbourhood is aggregated:

N (yi) := N (yi) ∪ {i} (3.23)
Yi := (yi1 ... yik yi)

yi := 1
|N (yi)|

Yi1|N (yi)|

Afterwards, a PCA is performed for this local data matrix Yi, by centralising it accord-
ing to the mean value yi of the columns and computing the eigenvectors corresponding
to the d largest eigenvalues of the local Gram matrix Gi ∈ R|N (yi)|×|N (yi)|:

Gi :=
(
Yi − yi1T

|N (yi)|

)T(
Yi − yi1T

|N (yi)|

)
(3.24)

=: WiΛiW
T
i

The eigenvectors of this local Gram matrix define the directions of the tangent space.
As for all LM-approaches, the next step of LTSA is to aggregate these local properties
into one global data matrix ΦLTSA. First, a modified local Covariance matrix is
reconstructed from the local eigenvectors. Then the global matrix ΦLTSA is initialised
to 0s×s and iteratively updated with the modified reconstructions of all points. With
ΦLTSA

[
N (yi),N (yi)

]
being the square submatrix for the indices in N (yi) the update

is performed ∀i = 1, ..., s by:

Γi :=
 1|N (yi)|√
|N (yi)|

w1 ... wd

 ∈ R|N (yi)|×d+1 (3.25)

ΦLTSA
[
N (yi),N (yi)

]
← ΦLTSA

[
N (yi),N (yi)

]
+ I|N (yi)| − ΓiΓT

i (3.26)
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Finally, the low dimensional coordinates can be obtained by computing an EVD of
this global data matrix and selecting the eigenvectors corresponding to the second to
d+ 1-smallest eigenvalues:

ΦLTSA =: V ΛV T

X̃ := (vs−d−1 . . . vs−1)T (3.27)

As for all LM-approaches, the vector corresponding to the smallest eigenvalue is
discarded, since it is assumed to be 1s, which has an eigenvalue of 0 by construction,
which is achieved by adding the normalised vector in Eq. (3.25).

1: Construct the complete neighbourhoods N (yi) of each data point yi.
2: Centralise data and compute d largest eigenvectors Wi according to Eq. (3.24).
3: Aggregate global alignment matrix ΦLTSA, see Eq. (3.26).
4: Compute second to d + 1-smallest eigenvalues of matrix ΦLTSA and construct

coordinates according to Eq. (3.27).

Algorithm 3.2: LTSA Algorithm. Modified from [ZZ04].

The local PCA described in Eq. (3.24) can also be computed from pairwise Euclidean
distances, as explained in Section 3.4.2, and the calculation of the kNN is also triv-
ially possible. Thus, since the subsequent steps do not depend on the actual values,
the LTSA can be performed from pairwise Euclidean distances as well as from the
actual values.
Like LLE, LTSA is still a LM but has two improvements over the first approach.
Rather than relying on a single property such as one set of reconstruction weights,
LTSA preserves multiple properties as the tangent space is described in terms of mul-
tiple base vectors. These multiple properties leave less degrees of freedom for the low
dimensional embedding, which alleviates the risk of not capturing the global structure
correctly in the low dimensional embedding.
Furthermore, the actual position of the active point in the local neighbourhood is re-
flected: The LLE discards the information, whether the approximation by the nearest
neighbours was good or bad, see Fig. 3.7. In LTSA, however, this information is en-
coded in the base vectors of the tangent space. If the active point is different from its
neighbours, there is a dedicated base vector separating it from the other points. Since
these base vectors are used to build the global alignment matrix, this information is
incorporated in the process.
Unfortunately, LTSA also inherits some of LLE’s problems. The overall performance
heavily depends on the ability to describe the global manifold by local properties
only. This is furthermore complicated by the fact that the local PCA of the neigh-
bourhoods N (yi) can sometimes fail to determine the tangent spaces correctly, e.g.
for data with heavy noise or bad choices of k.
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In [ZQZ11], the authors introduced an improved version of LTSA by adjusting the
determination of the tangent space. In this variant, the points in the neighbourhood
N (yi) are centralised onto the point yi instead of the local mean value yi. This way,
the origin of the approximation of the local tangent space is at the given point and not
in the local mean. Furthermore, in the following local PCA, the points are weighted
according to their distance to the point i in relation to a kernel width t ∈ R:

ωij = exp
(
−‖yj − yi‖

2
2

t

)
,∀j ∈ N (yi) (3.28)

A benefit of this weighting is that points in the local neighbourhood, which are far
away in relation to the kernel width, are not “polluting” [ZQZ11] the tangent space
estimation. A drawback of this method is the additional parameter that needs to
be calibrated to the underlying data, which faces the same challenges as the ε-rule
mentioned in Section 3.3.2.1.

3.3.3.2 Extension for Comparative Analysis

For an automated use in a Comparative Analysis, the base version described in the
last paragraph is easier to use than the improved method of [ZQZ11], since it is not
concerned with calibrating the additional parameter, but only the neighbourhood
size k. Therefore, for simplicity and better comparability, the base version was used,
and the same modified k-rule was applied, as in the other previously mentioned
approaches, see Section 3.3.2.2.

For use in a CA, the original method had to be adjusted. The initial design requires
that the target dimension d is known before computing the embedding to determine
the correct number of base vectors of the tangent space to be extracted from the local
PCA. Since the intrinsic dimension is rarely known in the application of analysing
simulation results, an alternative was developed: The local PCA was conducted for
the full number |N (yi)| of possible base vectors and then a variance cut according to
Eq. (3.9) was applied with κ = 0.96. This way, the local tangent space dimension
di is determined independently for all neighbourhoods. This needs to be reflected in
the reconstruction of the local covariance matrices ΓiΓT

i . In the original approach,
all base vectors were equally important and treated equally in the reconstruction.
With the new variance cut, it is important to introduce some order or ranking to
the tangent space base vectors and to transfer this ranking to the global alignment
matrix ΦLTSA. This was achieved by the following scaling for a given 0 < η � 1 ∈ R:

Γ̃i :=
 1|N (yi)|√
|N (yi)|

(1− η)w1 ... (1− jη)wj ... (1− diη)wdi

 (3.29)

Trivially, setting η to zero would yield the original method. A value of η = 10−7 was
used in this work, but this could be adjusted for other applications. This way, the
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influence of the base vectors on the reconstructed Covariance matrix Γ̃iΓ̃T
i is slowly

declining for eigenvectors associated with smaller eigenvalues, but not so strong that
they could be neglected. Furthermore, the scaling with η has a subtle but beneficial
effect on the obtained embedding: If all tangent vectors are equally weighted, the
orientation of the resulting low dimensional coordinates is arbitrary. If the scaling
is applied, the first coordinate is the one that best aligns with the locally most im-
portant components, the second the second best and so on, which can contribute to
orientate the result. Apart from using the modified matrices Γ̃i the aggregation of
the global alignment matrix ΦLTSA can be done without any further modifications
afterwards. Another benefit of this modification, apart from not needing to know the
intrinsic dimension beforehand, is that this version of the LTSA method is incremen-
tal: Since the local tangent space estimation does not depend on the target dimension
d, it does not affect the computation of the global alignment matrix ΦLTSA. Hence,
the resulting eigenvectors are always the same and the only difference is the number
of vectors used for the low dimensional coordinates.
The base LTSA approach does not provide any equivalent to the importance factors
needed for the application in an CA. A method which tries to compute global im-
portance factors from the local eigenvalues of each neighbourhood was investigated,
but the results were not encouraging. Instead, this modified method was extended by
importance factors in the same manner as LLE in Section 3.3.2.2: After calculating
low dimensional coordinates, these are scaled to make the embedding locally distance
preserving, see Eq. (3.21). This is motivated by the fact that the tangent spaces
are defined in terms of linear combinations of the nearest neighbours, which can be
interpreted as weights for local interpolations as well, see Section 3.2.3.
In a similar way, the visualisation of the underlying effects can be achieved through
a variant of LLI, here referred to Local Affine Interpolation (LAI). Analogous to the
two methods described before, the neighbourhoodsN (x∗e) = {j1, ..., jk+1} for the eval-
uation points are first determined, but this time using the (k+1)-nearest neighbours.
The next step of the LAI is to compute reconstruction weights in the low dimensional
space, which can be done utilising the preservation of tangent spaces. The idea is
the same as for PCA described in Section 3.2.3, but the operation is limited to the
given neighbourhood, which is in general not centralised like the PCA result. Thus,
the mean x∗e of the neighbourhood without the evaluation point is computed first and
the data centralised according to this mean value. Then, an SVD of the centralised
neighbourhood is performed.(

xj1 − x∗e ... xjk+1 − x∗e
)

=: UΣV T (3.30)

Since U is an orthonormal basis of the tangent space, the weights to construct the
projection of x∗e onto the tangent space from its neighbours can be computed by
subtracting the mean value, then multiplying with the pseudo inverse and adding the
mean value in terms of weights afterwards:

ω := V Σ−1UT (x∗e − x∗e) + 1
k + 11k+1 (3.31)
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Finally, the approximation of the high dimensional point can be computed as a linear
combination of the nearest neighbours in the original dimension using these weights,
see Eq. (3.22).

3.3.4 Modified Locally Linear Embedding

This subsection introduces a third LM, which is an extension to the LLE approach,
dealing with the aforementioned regularisation issues of the original approach.

3.3.4.1 Base Method

Modified Locally Linear Embedding (MLLE) [ZW07] is sometimes also aptly called
Multiple-weight Locally Linear Embedding [BLTD17] and was introduced 2007 by
Zhen-yue Zhang and Jing Wang to overcome a core problem of LLE.
In LLE, the calculation of the weights that best reconstruct a point from its neigh-
bours is achieved by aggregating a local Gram matrix and then solving the resulting
system of linear equations, see Eq. (3.13). As already mentioned, this poses a prob-
lem, if the resulting matrix is singular or close to singular. This can be the case,
for example, if the number of neighbours is bigger than the intrinsic dimension d
or if the samples are not well distributed. The original LLE approach and several
derived variants try solving this issue by various regularisations, but calibrating the
underlying hyper parameters can be challenging for some applications.
In contrast, the base idea of MLLE is to treat the singularity of this local Gram
matrix not as a problem to overcome but as a potential to use: The small eigen-
values of the matrix indicate not only that the system can be solved, but also that
there are several close to optimal solutions existing simultaneously. In MLLE a low
dimensional embedding is calculated, which best preserves all these close to optimal
combinations of weights.
An example for the preservation of multiple weights is given in Fig. 3.9. Here, the
intersection of the dashed and the dotted lines in two dimensions is the best approx-
imation of the leftmost point by its nearest neighbours. This intersection can be
defined by a weighted pair of any two out of the three points on the right. In one di-
mension, the position of the approximation relatively to all other points is preserved.
This is similar to Fig. 3.6 in that the ratio of the line segments to the intersection is
preserved, but this time all segments between the three neighbours are considered.
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D = 2

d = 1

Figure 3.9: Graphical example of preserving multiple weights in a low
dimensional embedding. The continuous line represents the manifold
with four sample points highlighted. This schematic was motivated
by [LV07].

The first step of MLLE is the same as in LLE. Initially, the local Gram matrix
Gi ∈ R|N (yi)|×|N (yi)| is assembled for each point i and the solution wi(%) ∈ R|N (yi)| to
Eq. (3.12) with the % ∈ R regularisation of Eq. (3.15) is computed. Additionally, an
EVD of the local Gram matrix is computed, where it is assumed with

Gi =: Vi diag
(
λ1, ..., λ|N (yi)|

)
V T
i

that λ1 ≥ λri � λri+1 ≥ λ|N (yi)|, meaning that the first ri eigenvalues of Gi are
relatively large compared to the remaining si := |N (yi)|−ri values. The eigenvectors
can also be separated in two groups, with:

Vi =: (VriVsi)

Starting from the same regularised solution as in LLE, Zhang and Wang construct
si linear independent weight vectors w(1)

i ... w
(si)
i utilising the eigenvectors Vsi of Gi

which correspond to the aforementioned small eigenvalues. To construct these weight
vectors, two instances are needed. The first is the fraction of the local mean value
lying in the span of these eigenvectors. The mean value can be expressed in terms of
weights and then projected onto these vectors:

αi := 1
|N (yi)|

‖V T
si

1|N (yi)|‖2

The second is Hi ∈ Rsi×si, a Householder matrix [LM12] defined by:

h0
i := αi1si − V T

i 1|N (yi)|

hi :=


h0
i

‖h0
i ‖2

, if h0
i 6= 0si

0si , else
Hi := Isi − 2hihT

i
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With these two instances and Hi(:, l) being the l-th column of Hi, several weight
vectors can be constructed as

w
(l)
i := (1− αi)wi(%) + ViHi(:, l) ,∀l = 1, ..., si (3.32)

This means that the initial solution is varied along the axis of the kernel of matrix Gi

to obtain multiple weight vectors. These multiple weight vectors should be preserved
for all neighbourhoods in a global embedding. As for all LM approaches a global
alignment matrix ΦMLLE is aggregated. The authors use the same mechanism they
previously utilised in LTSA. They initialise ΦMLLE = 0s×s and then update it with
local Gram matrices computed from the weight vector matrices for all points. Again,
ΦMLLE [N (yi),N (yi)] is the submatrix for the indices in N (yi) and the update can be
written as:

Wi :=
(
w

(1)
i ... w

(si)
i

)
∈ R|N (yi)|×si

ΦMLLE [N (yi),N (yi)]← ΦMLLE [N (yi),N (yi)] +WiW
T
i ∀ i = 1, ..., s (3.33)

Analogous to LLE and LTSA, an EVD of the global alignment matrix ΦMLLE is
computed and the low dimensional coordinates retrieved from the eigenvectors by:

ΦMLLE := V ΛV T

X̃ := (vs−d−1 . . . vs−1)T (3.34)

As with the other two approaches before, the vector corresponding to the smallest
eigenvalue is discarded because it is assumed to be 1s, which by construction has an
eigenvalue of 0, because its contribution to the weight vectors was as αi and then
subtracted in Eq. (3.32).

1: Determine neighbourhood N (yi) of each data point yi.
2: Compute regularised solution wi(%) according to Eq. (3.15).
3: Select the number of weights si to be preserved for each neighbourhood.
4: Assemble the global alignment matrix ΦMLLE by the update of Eq. (3.33).
5: Compute second to d + 1-smallest eigenvalues of matrix ΦMLLE and construct

coordinates according to Eq. (3.34).

Algorithm 3.3: MLLE Algorithm. Modified from [ZW07].

In Section 3.3.2 it was already mentioned that the aggregation of the local Gram
matrix and computation of the regularised solution can be done from pairwise dis-
tances as well as from the high dimensional values. Since the first step of MLLE is to
construct said local Gram matrix and all further steps are independent of the original
values, MLLE can be performed from pairwise differences in the same way as LLE,
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which can be interesting for data sets with a large original dimension.
The preservation of multiple weights in MLLE mitigates two problems of the LLE
approach: Using multiple weights instead of a single set helps with the insufficient
capture of the underlying structure of the manifold similar to the multiple base vec-
tors of the tangent space in LTSA. Furthermore, the authors claim in [ZW07] that the
solution is not as sensitive to the regularisation parameter % as the original approach,
which makes calibration much easier. This behaviour was also confirmed during the
research for this work. The property of losing information regardless of whether the
approximation is good or poor does still persist in MLLE because no further residual
information is transferred to the global alignment matrix. This leaves more freedom
for the global embedding than the LTSA method, which may or may not be desirable,
depending on the applications and the level of noise present in the data.

3.3.4.2 Extension for Comparative Analysis

Similar to the basic LLE, the modified approach has a few options, to modify the
outcome of the method and those need to be chosen appropriately in the context of
the analysis of simulation results.
The first options are the construction of the local neighbourhoods N (yi) and the
choice of the regularisation parameter %i. Since they are the same as in the basic
approach, these options were also treated in the same manner as explained in Section
3.3.2.2 for LLE: With the modified k-rule and the new regularisation %i,NEW intro-
duced in Eq. (3.18), for the same reasons explained earlier, as well as to increase the
comparability with all previous approaches. The weight factor ω was chosen identical
in both LLE and MLLE. This is possible, since the claim of the authors in [ZW07],
that MLLE is not so sensitive to the regularisation, was confirmed in most investi-
gated examples.
A new option in MLLE is how to choose the number of different weight vectors si for
each point. The original publication suggests choosing a threshold error value η < 1
and selecting the number of weights as:

si := max
l

l (3.35)

subject to: l ≤ |N (yi)| − d∑|N (yi)|
j=|N (yi)|−l+1 λ

2
j∑|N (yi)|−l

j=1 λ2
j

<η

with λ1 ≥ ... ≥ λ|N (yi)| being the eigenvalues of the local Gram matrix Gi as intro-
duced before. Unfortunately, this method is only applicable for applications where
the target dimension d is known before applying the method, as it is explicitly used in
Eq. (3.35). Furthermore, an appropriate threshold error value η is sometimes hard to
calibrate, though the authors give a recommendation on how to calibrate this value
in [ZW07]. In this work, a new approach was developed to determine the number of
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different weights. The idea is to first compute the approximate rank r̃i of the problem
by performing a variance cut

g(l) :=
∑
k<l λ

2
k∑

j λ
2
j

r̃i := arg min
l

g(l) (3.36)

subject to: g(l) > κ

and then to calculate si by a simple subtraction to get an approximation of the kernel
dimension:

si = |N (yi)| − r̃i
If the number of weights is smaller than two, only the single regularised solution wi(%)
is used. This way, the target dimension does not need to be known before applying the
reduction. Furthermore, for fixed neighbourhoods N (yi) the extended method with
this mechanism is modified to be incremental, since the calculated weights vectors
are now the same and only the number of dimensions to be computed is depending
on the target dimension d. This variance cut is a new hyper parameter, but it is
fortunately relatively easy to calibrate, since κ = 0.97 was used for all tests in this
work and showed viable results for all examples.

The last requirements for an CA are importance factors and the visualisation of
underlying effects. Since the base concept is still the same, the MLLE method was
extended by importance factors in the same manner as LLE in Section 3.3.2.2 and the
creation of virtual simulation was done accordingly as well. Both operations require
the preservation of local linear combinations, which is still valid for MLLE, thus no
further modifications were needed. This way, all three introduced LMs are completed
to be used in the analysis of simulation results.

3.4 Multidimensional Scaling
The next class of DRMs is the class of the Multidimensional Scaling (MDS) [KW78]
methods.

3.4.1 Commonalities

The term MDS describes a family of methods that calculate low dimensional embed-
dings that best preserve given pairwise dissimilarities. These methods are divided
into two subclasses of metric and non-metric MDS methods, depending on whether
they are based on a continuous quantitative dissimilarities or discrete similarity ranks
[LV07]. In this work, only metric MDS approaches are covered, and all dissimilar-
ities are distance measures. Starting from the given distance values δij from point
number i to point number j, the first step of metric MDS is to square these values
and aggregate them into a matrix ∆Y ∈ Rs×s. It is assumed that the distances are
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symmetric, meaning that δij = δji. The next step is to perform a so-called “double
centring” [LV07] using the centring matrix Zs, see Eq. (3.3).

Zs := Is −
1
s

1s1s
T

∆Y :=
(
δ2
ij

)
ij

SY := −1
2 (Zs∆YZs) (3.37)

The matrix SY ∈ Rs×s is decomposed into an EVD with:

SY =: V ΛV T

Then, a number of vectors 1 ≤ d < s determined, such that the truncated EVD
restricted to the eigenvectors associated with the largest eigenvalues yields a good
approximation of the squared and centred distance matrix. These eigenvectors are
transposed and multiplied by the square root of the eigenvalues to obtain the low
dimensional representation.

SY ≈ SY d := V |dΛ|dV |Td
X̃ := Λ|

1
2
dV |Td (3.38)

The Euclidean distance of these low dimensional points is then close to the high
dimensional dissimilarity:

‖xi − xj‖2 ≈ δij

In more detail, the embedding computed by an MDS approach is minimising the
following stress function globally in a least squares sense, see [LV07] for more details.

EMDS = 1
2

s∑
i,j=1

(δij − ‖xi − xj‖2)2 (3.39)

This means that the absolute error is minimised, resulting in longer distances being
relatively more accurate than shorter distances.

1: Compute pairwise squared distances.
2: Perform double centring, see Eq. (3.37).
3: Compute EVD and low dimensional embedding according to Eq. (3.38).

Algorithm 3.4: MDS Algorithm. Modified from [LV07].

In contrast to the LM-approaches, which rely solely on local descriptions to cap-
ture the underlying manifold, MDS extracts features on a global scale as all pairwise
dissimilarities are computed. There are several choices for different dissimilarity mea-
sures present in the literature. Three of them are further reviewed in the following
subsections.
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3.4.2 Classic Metric Multidimensional Scaling

In the case where the dissimilarities are the pairwise Euclidean distances δij = ‖yi −
yj‖2, the method is called Classic Metric MDS. It is shown in [LV07] that the double
centred matrix 1

DSY = Gy, with GY is the Gram matrix of scalar products of the
PCA-approach as introduced in Section 3.2. Since the matrices for the eigenvalue
problem are the same PCA and classical metric MDS yield the same results [LV07].
Since the pairwise Euclidean distances are the starting point, it offers an alternative
to the standard PCA approach: Sometimes the aggregation of the full data matrix
can be challenging, especially for large result sets, while incremental computation of
squared pairwise distances can be easier in these cases. Furthermore, the eigenvalues
of the EVD directly yield the importance factors for the CA as described in Section
3.2. However, since Classic Metric MDS is equivalent to PCA, it also has the same
aforementioned limitations resulting from the linear approach.

3.4.3 Isomap

In this subsection a second MDS approach is introduced, which is a nonlinear alter-
native to the linear method described in the last subsection.

3.4.3.1 Base Method

The Isomap approach, short for Isometric Feature Mapping, was first published by
Joshua B. Tenebaum in 1998 [Ten98] and later together with Vin De Silva and John
C. Langford [TDSL00]. The base idea is to compute a quasi-isometric embedding by
preserving the geodesic distances of points in the data set [BST+02]. The geodesic
distance is the length of the path from one point to another on a manifold, which can
largely vary from the Euclidean distance of the points, see Fig. 3.10.
Isomap is an MDS approach that aims to compute a low dimensional embedding
in which the Euclidean distances are equal to these geodesic distances in the high
dimensional space.
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D = 2

d = 1

Figure 3.10: Graphical example of different distances. The continu-
ous line represents the manifold with two sample points highlighted.
The dotted line represents the Euclidean distance in two dimensions.
The dashed line is the geodesic distance of the two points regarding
this manifold, which is identical in one or two dimensions. This plot
is a modified version of the original in [LV07].

Reconstructing geodesic paths in a manifold that is unknown and only given in the
form of a finite number of possibly noisy samples is not trivial. In the Isomap method,
the unknown true geodesic paths are approximated by graph distances. For this
purpose, the neighbourhood N (yi) for each point yi is constructed, for example by the
ε- or the k-rule, see Section 3.3.2.1, or by any rule the analyst sees fit, for example, the
ones introduced in [LV07]. Then, an undirected graph is constructed by connecting
a point with all points in its neighbourhood and assigning the Euclidean lengths of
these edges as the edge weights. Next, the All-Pairs Shortest Paths (APSP) are
computed in this graph and the lengths of these paths are considered as the geodesic
distances of the points.
Finally, the MDS steps of assembling the dissimilarity matrix ∆Y from these squared
distances, double centring as in Eq. (3.37) and the EVD computation are performed.

1: Compute the neighbours N (yi) of each data point yi and build undirected neigh-
bourhood graph

2: Compute APSP and the length of the paths in this graph as distances.
3: Perform regular MDS with these graph distances.

Algorithm 3.5: Isomap Algorithm. Modified from [TDSL00].

As the graph and the introduced neighbourhood rules only depend on the Euclidean
distances, the graph distances of Isomap can either be computed from high dimen-
sional coordinates or directly from Euclidean distances.
These graph distances can sometimes unravel global structures better than Euclidean
distances or the LMs. Though this can help with the aforementioned issue of failing
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to capture the global features in LMs, the graph distances introduce a new problem.
Beyond one dimensional manifolds the paths in the neighbourhood graph tend to in-
troduce “spurious geodesic curvature, i.e. zigzags” [BYF+19] into the data, since they
cannot follow the manifold directly, but only the edges between nearest neighbours.
These zigzags cause small detours in the geodesic paths increasing with the number
of edges, since the graph paths are only an approximation of the true geodesics.
An example for such detour is given in Fig. 3.11. In this figure, the dashed line is
the geodesic distance between the square and the triangle, while the dotted line is
the significantly larger approximation yielded by the graph distances. The elongation
effect of such detours highly depends on the number of neighbours and the structure
of the data but can affect the embedding significantly. This effect can get worse the
more edges a path is consisting of.

Figure 3.11: Graphical example of spurious geodesic curvature.
Given four points sampled from a larger manifold, the continuous
lines represent the edges of the neighbourhood graph.

Although the drawback of spurious geodesic curvature is known for Isomap, the ap-
proach is very popular in many applications [ST02], [BST+02], [Fra16], among others
because of its stability [LV07]. The Isomap approach can handle noisy data as well
as mixed dimension manifolds relatively well compared to other methods, as can be
seen later in Section 5.1.

3.4.3.2 Extension for Comparative Analysis

Another reason for the popularity of the Isomap approach is that it has only a single
parameter which needs to be calibrated to influence the outcome. This parameter
is the construction of the neighbourhoods. In this work, the same approach of the
modified k-rule, which constructs a connected graph as described in Section 3.3.2.2,
was used. One reason is that the MDS steps require a connected graph, otherwise
some of the dissimilarities could be infinite leading to problems with centralisation
and EVD operations. Another reason is to make the different approaches and their
performance better comparable: If the neighbourhood building is identical, the dif-
ferences in the performance of the DRMs are purely due to the methods themselves.
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Apart from the existing parameters, only a few adjustments are needed for the anal-
ysis of simulation results. The importance factors required for the CA can be easily
obtained since Isomap is an MDS method: The eigenvalues of the EVD of the double-
centred distance matrix, see Eq. (3.37) and Eq. (3.38), can explicitly be calculated,
and used the same way as in the case of Classic Metric MDS.
The only addition is that the resulting matrix is not necessarily positive semi-definite
since the graph distances are only an approximation of the true geodesic distances
[LV07]. This should be considered when determining the number of dimensions used
for an embedding. In contrast to classic metric MDS, not all computed eigenvec-
tors are beneficial to preserving the pairwise distances. It can occur that extending
the embedding to later modes actually worsens the similarity of the low dimensional
coordinates and the high dimensional dissimilarities. Therefore, the incremental em-
bedding should be stopped at that point and no further coordinate directions should
be used.
The last part missing for a CA is the visualisation of the underlying effects utilising
the points x∗e ∈ {x+

e , x
−
e }. As mentioned before, the LLI was initially introduced in

the context of Isomap in [FZGK14] and can be used to get an approximation of the
projection of the evaluation points in the same way as described in Section 3.3.2.2.
First, the neighbourhood N (x∗e) of the evaluation point is determined, for example
by calculation of its kNN. Then the weights that best reconstruct the point from
its neighbours are computed in the low dimensional space. The approach originally
introduced in [FZGK14] is defining an additional norm

‖we‖c :=
∑

j∈N (x∗
e)
cjw

2
ej, cj := υ

(
‖x∗e − xj‖2

maxi‖x∗e − xj‖2

)p

with hyper parameters 0 < υ � 1 ∈ R and 1 < p ∈ N. This norm is used to modify
the function for the weight calculation of LLI with an additional term:

min
we

εe =
∥∥∥∥x∗e − ∑

j∈N (x∗
e)
wejxj

∥∥∥∥2

2
+ ‖we‖2

c (3.40)

subject to:
∑

j∈N (x∗
e)
wej = 1

This way, large weights are penalised for points that are nearest neighbours but rela-
tively far away. While this approach can improve the results for the interpolation by
enforcing a local approximation, it has the drawback that two hyper parameters need
to be calibrated. Regardless of whether the weights are calculated with or without
the additional penalization of large weights for distant points, the approximation of
the high dimensional points can afterwards be computed as a linear combination of
the nearest neighbours in the original dimension, see Eq. (3.22).
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3.4.4 Parallel Transport Unfolding

The method described in this subsection is the latest of all literature approaches
mentioned in this work and can be viewed as an improvement of the Isomap method
described in the previous subsection.

3.4.4.1 Base Method

The Parallel Transport Unfolding (PTU) approach was introduced in a preprint in
2018 but published in 2019 by Max Budninskiy and others [BYF+19]. Its goal is the
same as in Isomap, which is to compute an embedding, where the low dimensional
Euclidean distances match the high dimensional geodesic distances.
As explained in Section 3.4.3, the Isomap approach approximates the unknown true
geodesic distances by path lengths in a graph defined by local neighbourhoods. This
approach tends to overestimate the true geodesic distance for manifolds with an
intrinsic dimension d > 1 due to paths having to zigzag through intermediate points,
subsequently elongating the distance.
The PTU approach is Budninskiy’s second method with the aim to correct these
paths and to remove the “spurious geodesic curvature” [BYF+19]. The first method
called Spectral Affine-Kernel Embedding (SAKE) [BLTD17] did not yield such a
good correction as the superior PTU as is shown in the introductory paper of the
latter [BYF+19]. PTU’s better correction is achieved by projecting the polygon paths
resulting from the neighbourhood graph into the tangent space at each point and then
parallel transporting them recursively to the origin of said paths. These lengths of
the projected and transported paths are called parallel transport distances. The
low dimensional embedding is finally obtained by performing an MDS with these
distances.
The preservation of such distances is visualised in Fig. 3.12. Here, the dotted line is
the distance from the middle to the upper point in the tangent space of the second
point. The dashed line is the parallel transport distance of the lower point to the
upper point in the tangent space of the lower point. It consists of the distance from the
lower point to the middle point in this tangent space plus the parallel transport of the
dotted line into this tangent space. All distances parallel transported to the tangent
spaces are preserved as Euclidean distances in the low dimensional embedding.
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D = 2

d = 1

Figure 3.12: Graphical example of preserving parallel transport dis-
tances in a low dimensional embedding. The thick continuous line
represents the manifold with three sample points highlighted and the
dashed line is the parallel transport distance.

The first step of PTU is identical to Isomap, which is to construct the local neigh-
bourhoods N (yi) for each point yi by a suitable rule, see Section 3.3.2.1. Additionally
to Isomap, an orthonormal basis Ti ∈ RD×d for the d-dimensional tangent space at
each of these points is computed, for example, by PCA or a robust alternative [ZL14].
With these so-called “tangent frames” [BYF+19] in place, the discrete parallel trans-
port from data point j to data point i can be defined as

Rj,i := arg min
R∈O(d)

‖Ti − TjR‖2
F (3.41)

with O(d) being the group of orthogonal matrices in Rd×d and ‖ · ‖F the Frobenius
norm [LM12]. This means that the parallel transport is the orthogonal matrix, which
best aligns the tangent frames to each other. As the authors state, Rj,i as the optimal
R of Eq. (3.41) can be obtained utilising an SVD of the product of said tangent
frames:

TT
i Tj =: UΣV T

Rj,i := V UT (3.42)

From this follows that the transport in the opposite direction can be obtained as
RT
j,i = Ri,j. In the next step of PTU, the shortest paths in the neighbourhood graph

are computed and then corrected using these parallel transport matrices.
Let (yo, yi1, yi2, yi3, ..., yik , yt) be the shortest path through the high dimensional neigh-
bourhood graph from an origin point yo to a target point yt. This path is incrementally
projected into the tangent space of the origin, starting with the first edge yo to yi1.
The multiplication of the difference of the two points with the orthonormal basis

vo,i1 := TT
o (yi1 − yo)

yields the coefficients of the linear combination, which expresses the first edge in
terms of the tangent frame at the origin. This is considered as the first edge of the
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corrected path in the representation of the orthonormal basis. The second edge is
then also expressed in terms of the local tangent frame but of the first intermediate
point yi1 instead of the origin.

vi1,i2 := TT
i1 (yi1 − yi2)

This projection into the intermediate tangent frame is then parallel- transported
back to the origin point. The corrected path is then updated with this projected and
parallel transported edge:

vo,i1,i2 := vo,i1 +Ro,i1 vi1,i2

Each point must be transported through all intermediate tangent spaces. Thus, the
third edge is projected into the tangent space at the second intermediate point and
then transported through two predecessor tangent spaces to get the update for the
corrected path in the local frame at the origin.

vo,i1,i2,i3 := vo,i1,i2 +Ro,i1Ri1,i2 T
T
i2 (yi3 − yi2)

This process is incrementally repeated until the target point is reached:
vo,i1,...,ik,t := vo,i1,...,ik +Ro,i1 · ... ·Rik−1,ik T

T
ik

(yt − yik) (3.43)
The norm of the vector containing the corrected path is considered as the distance
from origin to target, since it is composed of coefficients for a linear combination of
orthonormal vectors. Parallel transports are path dependent, i.e. different paths can
yield slightly different distances and the path from origin to target is not necessarily
the same as from target to origin. Furthermore, even if the path is the same, the edges
from one point to another are projected into a different tangent space, if traversed
into the opposite direction. Thus, the parallel transport distance is the average of
the two paths between the points where origin and source are switched:

δ̃ot := 1
2‖vo,i1,...,ik,t‖2 + 1

2‖vt,j1,...,jl,o‖2 (3.44)

As PTU is an MDS approach the low dimensional embedding can afterwards be
obtained by calculating the first d eigenvectors of the squared and double centred
distance matrix, see Section 3.4.

1: Determine neighbourhood N (yi) of each data point yi and build the neighbour-
hood graph.

2: Calculate the shortest paths in this neighbourhood graph and the tangent frames
for all points yi.

3: Compute all pairwise parallel transport distances incrementally according to Eq.
(3.43) and Eq. (3.44).

4: Perform regular MDS with these parallel transport distances.

Algorithm 3.6: PTU Algorithm. Modified from [BYF+19].
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The projection into the tangent spaces and transport to the origin of the paths can
correct the spurious geodesic curvature introduced by the graph distances and thus
yield a better approximation of the geodesic distance than the latter. This was
demonstrated in [BYF+19], but it was also stated, that paths including many edges,
may have a decreasing accuracy, since they involve many subsequent matrix-matrix
multiplications which can accumulate errors.
Furthermore, for the PTU to yield meaningful results, certain requirements to the
data and the intermediate structures must be met. One of these requirements is in-
herited from the Isomap approach: The neighbourhood graph needs to be connected,
otherwise the distances cannot be computed reasonably.
A new additional requirement is that each of the neighbourhoods must span a tangent
space of sufficient dimension at each node. The original method requires the compu-
tation of orthogonal transport matrices Ri,j ∈ O(d) ⊂ Rd×d, which means, amongst
others, that these matrices are square. This is only possible if the tangent frames are
of the same dimension d. If a local neighbourhood does not yield enough information
to span a d-dimensional tangent space at one of the points, this is not possible. This
requirement will be revisited in Section 3.4.4.2.
Another somewhat hidden requirement is the smoothness of adjacent tangent spaces.
The discrete formulation of a parallel transport by aligning the tangent frames con-
nected in the nearest neighbour graph is only a valid approximation of the real con-
tinuous parallel transport, if the tangent spaces are relatively similar. If there are
large differences in the orthonormal basis of neighbouring points, the alignment could
yield jumps or reflections. This means that the transitions from one tangent frame to
a neighbouring one must be relatively smooth, otherwise cracks and gaps can open
in the embedded manifold. This topic is indirectly addressed in the original paper
[BYF+19] by sometimes using different numbers k and K for the nearest neighbours.
The original k is used to construct the neighbourhood graph and is selected rather
small to prevent short cutting, which means the resulting edges in graph are leav-
ing the manifold and are a poor approximation of geodesics. The other K ≥ k is
used to compute the tangent spaces. In most of their examples, the authors chose
K = k, but for some applications with rather noise data sets, they increase the value
up to K = 3k, as they state, to improve the results. The larger neighbourhoods
for the estimation of the tangent spaces mean, amongst others, that the differences
from one point to its neighbours are smaller because more points are shared between
connected samples than in cases where the neighbourhoods contain fewer points. A
correct estimation of the tangent spaces for each point yi is more important than
for example in the LTSA approach, since it affects all paths that pass through this
point and thus directly translates to all affected pairwise distances: If the estimation
is bad, all paths could be shortened or elongated. In the LTSA approach, on the
other hand, the global alignment matrix is assembled, and the global system solved
in a least squares sense. This means that a poor approximation of a single tangent
space will only affect a few rows and columns and can be corrected afterwards in the
global embedding. In summary, this means that the PTU approach can improve the
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Isomap method and yield better results, but it risks being more susceptible to noise
or poorly sampled data.
Another benefit of this method is that it is “linearly precise” [BYF+19] under cer-
tain circumstances: If the underlying manifold is linear and the local neighbourhoods
are sufficiently large to yield the correct tangent frame estimation, the authors have
proven in their original paper that the linear manifold is precisely retrieved by the
method. Such a proof does not yet exist for any of the other nonlinear methods.
The PTU algorithm is the first DRM covered in this work that cannot be computed
directly from pairwise Euclidean distances, since the tangent frames need to be known
to compute the parallel transport distances. This can be amended to some extended
for data sets with only few samples by performing an initial classic metric MDS on
the input data as a preprocessing for PTU. This step can always reduce the initial
large dimension D to D̃ = min{s − 1, D} yielding a dataset X̃ ∈ RD̃×s, which is
at least as small as the pairwise distance matrix ∆Y ∈ Rs×s and can be processed
efficiently. This workaround is especially interesting for data sets with only a few
samples s and a large initial high dimension D, which is usually the case in the CA
of simulation results.

3.4.4.2 Extension for Comparative Analysis

Like all previous methods, the original PTU has several options to influence the out-
come of the method. One of these options is the same as in the Isomap approach: It
is the construction of the local neighbourhoods, and in this work the same approach
of the modified k-rule was again used as in all previous methods.
But in contrast to Isomap, PTU has additional options that revolve around the es-
timation of the tangent frames. There are three factors influencing this estimation:
The number of neighbours K, the centralisation, and the actual basis approximation
itself.
First, the number of neighbours used in this thesis was set to K = 2k to reduce
the number of parameters to be calibrated by the user. Using a larger number of
neighbours has proven beneficial, especially for noisy data sets, as was stated in the
original paper and confirmed by the investigations conducted for this work.
For the second factor, the centralisation of the local neighbourhoods, the different
methods, which were introduced in the previous sections, could also be applied. In
the MDS approach the points involved in the EVD are centralised according to their
mean value. This would translate to computing the mean of the K-nearest neigh-
bours and subtracting it from the data, yielding an expectation of zero. In the LTSA
approach, the point yi was included in the neighbourhood for the mean computation,
which would be equivalent to subtracting a different value form the data, yielding
possibly not centralised values. The original PTU follows the idea introduced in the
improved LTSA method introduced in [ZQZ11], where the neighbourhood is cen-
tralised by subtracting the value of yi placing the origin of the tangent space in the
point, where it should be approximated. In this work, the same centralisation as in
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the LTSA approach was used in order to increase comparability and to smoothen
the tangent spaces: Centralising the neighbourhood onto the point itself can produce
artificially unbalanced tangent frames for outliers and points on the boundary of the
manifold, while centralising onto the mean of the neighbours completely neglects the
position of the active point. Thus, including the point into the centralisation of its
neighbourhood is a compromise between the two approaches.
The third option is the actual approximation of the tangent space. In this work the
simple PCA approach of a restricted SVD of the previously centralised neighbour-
hood was used, though it is important to note, that the alternative of a robust PCA
mentioned in [BYF+19] might produce some better results for data sets containing
few but strong outliers. With the larger neighbourhood size used for computation
of the tangent frame and the modified centralisation, there was no need for a more
robust approach on the investigated examples in this work, although this can be dif-
ferent in other application fields.

Apart from these options, the original method had to be further adjusted for the us-
age in the analysis of simulation results. First, the base approach requires the target
dimension d to be known before computing the embedding in order to determine the
correct number of base vectors for the tangent frames. Here the target dimension
is in general unknown and overestimated, so the number of base vectors for each
tangent frame needs to be determined automatically. Similar to the LTSA method a
local PCA was conducted for the full number |N (yi)| of possible base vectors for each
neighbourhood and afterwards a variance cut according to to Eq. (3.9) was applied
with κ = 0.93. The value of κ was chosen significantly smaller than in the LTSA
approach since the neighbourhoods are much bigger with K = 2k and the reduction
should be stronger. This way, the local tangent space dimension di is determined
independently for all neighbourhoods, which needs to be considered when computing
the parallel transport. While the vectors in the resulting tangent frames still have
the same size, the number of base vectors on the other hand could be different. This
means that Ti ∈ RD×di and Tj ∈ RD×dj , which leads to the result that the discrete
parallel transport matrix Rj,i ∈ Rdj×di is in general no longer square. Apart from the
need to distinguish the different numbers of base vectors the algorithm itself does not
change: The discrete parallel transport can still be computed by performing the SVD
of Eq. (3.42) and all further steps remain unchanged, apart from utilising rectangu-
lar matrices. This modification relaxes the requirement for each neighbourhood to
span a subspace of sufficient size, since this size is adapting for each neighbourhood
separately.
The second requirement for the CA is importance factors. Fortunately, these can be
easily obtained since PTU is an MDS method: The eigenvalues of the EVD of the
double-centred distance matrix, see Eq. (3.37), directly yield the importance fac-
tors as for the other two MDS approaches before. Similar to Isomap, the resulting
matrix is in general not necessarily positive semi-definite. Therefore, it should also
be checked here whether an additional dimension really improves the approximation
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of the pairwise distances in the incremental embedding, and the process should be
stopped, if the approximation starts to worsen.
Finally, the last addition to the approach is the computation of virtual simulation
results for the visualisation of underlying effects. Since the distances in the 1-ring
of each node are the distances in the local tangent space at that node and all these
pairwise distances are preserved, the PTU also preserves the local tangent spaces sim-
ilarly to LTSA, except that this information is encoded in the distances rather than
in a Gram matrix, see equivalence of classic metric MDS and PCA in Section 3.4.2.
Hence, the same mechanism as for LTSA can be used to compute virtual simulations,
where an LAI is performed with weights computed by a base representation of the
evaluation point in the vectors of the local tangent frame, see Section 3.3.3.2.

3.4.5 Further Methods

After the last requirement for CA is completed, all three introduced approaches in
the class of MDS methods can be used in the Extended Workflow. The scope of
this work is too limited to cover all MDS approaches, but since this class of DRMs
has been very popular in the analysis of simulation results in the recent years, as
mentioned in Section 2.1, a few further methods should be mentioned. With the base
concept of MDS and a few variations introduced, the difference to methods already
used in literature and the reasons why they were not used in this work can be better
explained, even though an in-depth introduction for these approaches is not given.
Further references and explanations can be found in the respective cited literature for
the methods.
In [BGIT+13] and [GIT15] so-called Diffusion Maps were used. Diffusion Maps are
also a family of methods, where the used pairwise dissimilarity is the so-called dif-
fusion distance. This distance is the expectation for the length of a random walk
from one point to the other inside the manifold. To compute this expectation the
transition probabilities need to be modelled, which is where the different versions
inside the family of Diffusion Maps vary. The probabilities are computed using a
density or kernel function. For these kernel functions, several different choices can
be found in the literature, all of which have at least one parameter that needs to
be calibrated. While this makes these approaches very powerful as they can adapt
to many use cases, the customisation also poses a challenge: The appropriate choice
of a kernel for an analysis task is not always clear and requires a certain degree of
experience. Furthermore, these kernel functions also have parameters that need to be
calibrated, which additionally makes this task more difficult. In [IT16] it was pointed
out that in the analysis of simulation results there are usually not enough samples to
calibrate these parameters automatically, so that the usage of these methods is only
feasible for experts in the field of data analysis. Moreover, the property of PTU being
linearly precise was not proven for Diffusion Maps and is in general not expected to
hold [PHHV08], especially for non-uniformly sampled manifolds. Because of these
complications, they were not used in this work.
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In [DWHS16] and [Die19], a new regression method specifically designed for the anal-
ysis of simulation results was presented. Here, the post values which should be anal-
ysed are mapped to a regression shape for all simulation results individually. For
example, the internal energy values for all shell elements of a longitudinal rail are
mapped to curve running through the centre of the rail. The mapping result is then
smoothened, and the similarity of these smoothened representation is computed by a
scalar product and then converted to a dissimilarity by subtracting them from one.
A strong advantage of this MDS method is that it is applicable to data with different
geometric representations, as all data is mapped to a regression shape and only the
regression shape needs to be topological unchanged. Unfortunately, this key feature
prevents its usage in this work, since it cannot be reversed. It is thus rendering the
method not generative. Thus, no equivalent for virtual simulations can be calculated.
Finally, in [GIT16] and [IT16] a spectral transformation method was used that ex-
tracts certain features of the data by applying operators that are invariant under
certain transformations. For example, the graph-based Laplace-Beltramy operator
was applied to the nodes of the mesh and the respective values were used as new
coordinates. These new coordinates are invariant under isometries, e.g. a rigid body
motion of the complete part. Then, the pairwise distances in the new coordinates
were computed and used for the final MDS step. These spectral methods can specif-
ically extract these properties for which they are not invariant, such as strong local
deformations or ruptures in the case of the Laplace-Beltramy operator and are very
potent because of the invariances. But, if the desired property is not known be-
forehand, this benefit poses a problem, namely the uncertainty of which operator to
choose. And more importantly, the invariance prevents it from being used in this
work, since an approximation for low dimensional points is only possible for the oper-
ator coordinates, but not for the original data representation. For this representation
the method is therefore not generative.
Summarising, these further methods from the class of MDS methods showed excel-
lent performance for the analysis of simulation result, but unfortunately could not be
used in this work, because they are not generative and require a level of interaction
or expertise that was not feasible in the automated analysis of simulation results.

3.5 Nonlinear Mapping
The last class of DRMs featured in this work is the class of Nonlinear Mapping (NLM)
methods.

3.5.1 Commonalities

This class of methods is named after Sammons Nonlinear Mapping, which was in-
troduced in 1969 [Sam69] to find a mapping from a high dimensional to a low di-
mensional space utilising weighted Euclidean distances. The idea is to iteratively
compute an embedding that minimises a stress function depending on the high and
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low dimensional distances. In [LV07] it was pointed out, that in general any dissim-
ilarity measure δij in the high dimensional data space can be used, while still using
Euclidean ones in the low dimensional space with the following stress function

ENLM = 1
c

s∑
i=1,j<i

(δij − ‖xi − xj‖2)2

δij
(3.45)

where the normalisation constant c is defined as:

c :=
s∑

i=1,j<i
δij

The division by the high dimensional dissimilarity provides a weighting to the ap-
proximations. It allows larger errors for longer distances while being relatively more
precise on shorter distances in contrast to the MDS approaches, where all distances are
weighted equally. Methods which compute low dimensional coordinates by minimiz-
ing this stress function are in this work referred to as NLM methods. Given a certain
high dimensional distance the actual minimization is done as described in [LV07]:
The low dimensional coordinates xi ∈ Rd for all points could be initialised with any
values, e.g. randomly or by performing MDS with the given distances. In this work,
the latter one is done. The individual entries of the coordinates 1 ≤ e ≤ d are then
iteratively updated for each point xi according to the following “quasi-Newton opti-
misation” [LV07] of Eq. (3.46) with a hyper parameter α ∈ (0, 1] ⊂ R to be chosen
by the user [LV07].

xi,e ← xi,e − α
∂ENLM
∂xi,e

∂2ENLM
|∂x2

i,e|
(3.46)

As only the Euclidean norm is depending on the low dimensional coordinates, the
derivatives can be analytically determined for each specific point xi and its e-th
entry, regardless of the type of high dimensional dissimilarity:

∂ENLM

∂xi,e
= 1
c

∑
j 6=i

1
δij

∂ (δij − ‖xi − xj‖2)2

∂‖xi − xj‖2

∂‖xi − xj‖2

∂xi,e

= −2
c

∑
j 6=i

δij − ‖xi − xj‖2

δij

∂‖xi − xj‖2

∂xi,e

= −2
c

∑
j 6=i

δij − ‖xi − xj‖2

δij

xi,e − xj,e
‖xi − xj‖2

= −2
c

∑
j 6=i

δij − ‖xi − xj‖2

δij‖xi − xj‖2
(xi,e − xj,e)



54 3 Dimensionality Reduction

And for the second derivative the result is accordingly:

∂2ENLM

∂x2
i,e

= ∂

∂xi,e

−2
c

∑
j 6=i

δij − ‖xi − xj‖2

δij‖xi − xj‖2
(xi,e − xj,e)



= −2
c

∑
j 6=i

δij − ‖xi − xj‖2

δij‖xi − xj‖2

∂ (xi,e − xj,e)
∂xi,e

+
∂ δij−‖xi−xj‖2

δij‖xi−xj‖2

∂xi,e
(xi,e − xj,e)


= −2

c

∑
j 6=i

δij − ‖xi − xj‖2

δij‖xi − xj‖2

+
∂(δij−‖xi−xj‖2)

∂xi,e
δij‖xi − xj‖2 − (δij − ‖xi − xj‖2) ∂δij‖xi−xj‖2

∂xi,e

δ2
ij‖xi − xj‖2

2
(xi,e − xj,e)


= −2

c

∑
j 6=i

δij − ‖xi − xj‖2

δij‖xi − xj‖2

+ ‖xi − xj‖2 (− (xi,e − xj,e) + (xi,e − xj,e))− δij (xi,e − xj,e)
δij‖xi − xj‖3

2
(xi,e − xj,e)


= −2

c

∑
j 6=i

δij − ‖xi − xj‖2

δij‖xi − xj‖2
− (xi,e − xj,e)2

‖xi − xj‖3
2


The update is repeated iteratively, until convergence is reached.

1: Compute all pairwise distances δij in the original D-dimensional data space.
2: Initialise the d-dimensional coordinates by performing MDS with the given dis-

tances.
3: Compute the update of Eq. (3.46) all individual entries of all points.
4: Update low dimensional coordinates.
5: Return to step 3 until the value of the stress function no longer decreases.

Algorithm 3.7: NLM Algorithm. Modified from [LV07].

The above-described process is the same for all methods in this class, the only dif-
ference is the kind of dissimilarity used in the high dimensional space and how the
pairwise values are computed. A different dissimilarity was also used for each of
the MDS approaches introduced earlier. The remainder of this section introduces a
corresponding NLM method for each of these MDS methods.

3.5.2 Euclidean Nonlinear Mapping

The first introduced NLM method in this work is the original approach that laid the
foundations for this class of DRMs.
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3.5.2.1 Base Method

The original approach introduced by Sammon [Sam69] uses the respective ‖·‖2 norm
on the original data as the high dimensional dissimilarity, which can be easily calcu-
lated for all pairs:

δij = ‖yi − yj‖2

All further steps are done according to the general introduction given above. To
distinguish between the different approaches, it is referred to as Euclidean Nonlinear
Mapping (ENLM) in this work because it is preserving the Euclidean distances. Triv-
ially, this method can skip the computation and be directly applied to the pairwise
distances if the data is not given as high dimensional coordinates but these distances
instead, similar to other DRMs introduced before. If the target dimension d is large
enough, classic metric MDS can preserve all pairwise distances without any error.
Since the low dimensional coordinates are initialised with this MDS result, the iter-
ation in Eq. (3.46) of the ENLM method does not yield any update and thus ends
after the first iteration. The method only differs, if the target dimension d is smaller
than the rank r < s of the input data set Y .

3.5.2.2 Extension for Comparative Analysis

Apart from the target dimension, the method has three known options to influence
the outcome. The first is the initialisation of the low dimensional coordinates that
is fixed to the corresponding MDS result in this work. Thus, NLM is used as a
post processing step improving the MDS result rather than computing a completely
different solution. Random initialisations entail the risk of yielding undesired result,
mainly in the form of local minima of the stress function ENLM, which have a much
higher value than the global minimum. Similarly, the MDS initialisation could also
result in a local minimum, but since the initial values are already optimal for EMDS,
see Eq. (3.39), the stress function ENLM is expected to be much lower than for random
values.
The second option to influence the outcome is the hyper parameter α: Using the
Quasi-Newton method NLM determines in each iteration for every point the steepest
descent of the stress function, i.e. the direction in which the point should be moved
to best decrease the value of the target function. The magic factor here is the step
length, which is limiting the update in the said direction. Larger values can speed up
the convergence process while also increasing the risk of instabilities as was outlined
in [LV07]. In the same book, a value of α ∈ [0.3, 0.4] ⊂ R is recommended as best
practice, but for an arbitrary initialisation of the data. Here, a value of α = 0.25
was fixed to decrease the number of parameters to be chosen by the user. It is
smaller than the literature recommendation to make the results more reliable and
less prone to instabilities. The slower convergence rate is acceptable since the initial
low dimensional coordinates already yield a small value for the stress function.
The third option is the stopping criterion for the iteration or how to determine,
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whether convergence was reached. Two criteria were applied here. First, the change
of the stress function from one iteration to the next was calculated and the iteration
was stopped if the absolute value was below a threshold of 5 × 10−9. Second, the
number of iterations was counted, and the method aborted when a total count of
3 000 was exceeded, since in the investigations for this work required at most a few
hundred iterations even for data sets exceeding a thousand samples.

In addition to the known options, some extensions were needed for the analysis of
simulation results. The original method has no equivalent of importance factors,
but they were obtained in an additional post processing step. After the iteration
had converged, classic metric MDS was applied to the low dimensional coordinates.
This way, the coordinates were aligned with the most important directions and the
importance factors for these corrected directions were also calculated.
For the calculation of virtual simulations, the modified LLI method described in
Section 3.4.3.2 was used, in which large weights for far apart neighbours are penalised.
This is motivated by the fact, that NLM approaches are relatively more precise on
short distances, so that only those should be used for interpolation. But since the
ENLM method does not have a neighbourhood size k, the total number of samples
was used for this method, which is closer to the PCA approach, which can yield the
same results if the intrinsic dimension is overestimated. This is especially important
since this is usually the case in the analysis of simulation results.

3.5.3 Graph-Based Nonlinear Mapping

The second method in the class of NLM approaches is an alternative to the one in
the last subsection by utilising a different high dimensional dissimilarity.

3.5.3.1 Base Method

This NLM variant aims to preserve geodesic distances and was introduced in [Yan04]
as Geodesic Nonlinear Mapping. It uses the same graph approximation of Isomap
for the unknown true geodesic distances as described in Section 3.4.3.1. To differen-
tiate from the following method in the next subsection, which also approximates the
geodesic distances, it is referred to as Graph-Based Nonlinear Mapping (GNLM) in
this work.
In contrast to ENLM, which yields the same result as its MDS counterpart PCA if
the target dimension is large enough, GNLM usually does not match Isomap’s result
because of the spurious geodesic curvature: The zigzags in the paths can turn the
preservation of the distances in the Euclidean low dimensional space into an overde-
termined system [LV07], which means that the stress function is minimised in a least
squares sense. Hence, the additional weights of ENLM can heavily affect the outcome.
This is very desirable because the more edges a path contains, the more artificial
curvature can be added through detours and therefore these longer distances should
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not be preserved as precise as the shorter ones. Albeit this mitigates the problem of
spurious geodesic curvature, it does not resolve it completely.

3.5.3.2 Extension for Comparative Analysis

The GNLM approach inherits all options to affect the performance of the DRM from
the Isomap and the ENLM methods because the graph distances were calculated in
the same way and the steps of the NLM approaches are the same. To increase the
comparability all options were treated in the same way as in these two methods,
resulting in the usage of the modified k-rule, see Section 3.4.3.2, as well as the ini-
tialisation with the Isomap result, hyper parameter α = 0.25 and the two criteria
definition of convergence, see Section 3.5.2.2.

The method was extended for the Comparative Analysis in the same way as ENLM
by calculating importance factors via an additionally application of classic metric
MDS on the iteration result as described in Section 3.5.2.2. The calculation of virtual
simulations was also done using the LLI method with additional distance constraint,
see Section 3.4.3.2, but here only the kNN were used for interpolation with the same
k that was used for the graph distances.

3.5.4 Parallel Transport Nonlinear Mapping

The third method in the NLM class is the last DRM introduced in this work.

3.5.4.1 Base Method

As is pointed out in [LV07], any dissimilarity can be used in NLM and its stress
function of Eq. (3.45) for the high dimensional distances. The approach to use an
approximation of the geodesic distances has shown good results [LV07] but was hin-
dered by the quality of the approximation by graph distances. With the introduction
of the parallel transport distances in [BYF+19] a better approximation is available,
but so far it was not combined with the NLM approach. Thus, this combination is
newly introduced in this work as Parallel Transport Nonlinear Mapping (PTNLM),
closing the gap in the existing methods.
The combination of parallel transport distances as described in Section 3.4.4.1, and
the weighted stress function of NLM in Section 3.5 harmonises well, since parallel
transport distances lose accuracy for paths consisting of many edges, and these tend
to be longer distances [BYF+19], whose weight is relatively small, see Eq. (3.45).
Furthermore, if PTU can preserve all pairwise distances without any errors, PTNLM
will return the same result, as the iterations in Eq. (3.46) will not yield any up-
date. This is especially interesting since PTU is linearly precise and it returns the
exact solution on linear manifolds, if the tangent spaces are estimated correctly. Thus,
PTNLM inherits this property of being linearly precise from the PTU approach under
the same circumstances.



58 3 Dimensionality Reduction

3.5.4.2 Extension for Comparative Analysis

Similarly, PTNLM inherits all options to influence the outcome from both PTU and
ENLM. As for all methods before, the options are treated in the same manner to
increase comparability, i.e. the neighbourhood building and tangent space estimation
were done as described in Section 3.4.4.2, and the NLM configuration is the same as
for ENLM, see Section 3.5.2.2.

The importance factors for the Comparative Analysis were once again deducted by
performing the classic metric MDS on the iteration result. But in contrast to the other
two NLM methods that used the LLI method, the creation of virtual simulations was
done according to the LAI interpolation described in Section 3.3.3.2 and Section
3.4.4.2. Similar to PTU, PTNLM is defining the distances in terms of paths in local
tangent spaces, only the preservation of these distances is weighted differently in
the NLM variant. As the distances to the kNN is usually small compared to the
other points and shorter distances are better preserved than longer ones, PTNLM
also preserves local tangent spaces relatively well. This is why the creation of virtual
simulations is done with the tangent space-based LAI.
With the last addition, all methods in the class of NLM approaches are ready for the
Comparative Analysis of simulation results.

3.6 Recapitulation
The last sections introduced three classes of DRMs with multiple different methods
in each class. In order to better understand the commonalities and differences, the
main features are briefly summarised before continuing with further theory in the
next chapter.
Approaches that belong to the LM category compute properties of local neighbour-
hoods aggregate a global alignment matrix and compute a low dimensional embedding
by calculating the eigenvectors corresponding to the smallest eigenvalues of this align-
ment matrix. This matrix is usually relatively sparse, since only entries for nearest
neighbours are non-zero. Thus, local properties are better preserved than global
structures, since only those are considered.
MDS approaches determine pairwise distances for all points and compute a low di-
mensional embedding by calculating the eigenvectors corresponding to the largest
eigenvalues of the squared and double centred dissimilarity matrix. This matrix is
usually dense, since all pairwise distances are computed. The Euclidean distances in
the resulting low dimensional embedding match the high dimensional dissimilarities
in a least squares sense. This means that longer distances are relatively better pre-
served than shorter ones, unravelling the global structures while sometimes neglecting
local properties.
NLM methods compute the embedding in an iterative process, where the initial low
dimensional node positions are obtained as an MDS result and then improved by min-
imising a stress function with a Quasi-Newton optimization. Methods in this class
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can be viewed as a compromise: They are similar to MDS methods in the sense that
they try to preserve pairwise distances. But in contrast to the previous class, the
distances are weighted according to their size, allowing to be relatively more precise
on smaller distances while still capturing the global structures.
The multiple methods within each class differ in the property or distance they aim to
preserve. An overview of these properties can be found in Tab. 3.3. As stated before,
the PCA approach is equivalent to classic metric MDS and thus an MDS method.
Furthermore, it is the only linear method covered in this work, all other approaches
are nonlinear.

Name Class Preserved Property Preserved Distance
Local Weights Tangent Space Euclidean Graph Parallel Transport

PCA MDS X
LLE LM X
LTSA LM X
MLLE LM X
Isomap MDS X
PTU MDS X X
ENLM NLM X
GNLM NLM X
PTNLM NLM X X

Table 3.3: Overview of the DRMs covered in this work, their classes
and what they aim to preserve in the low dimensional embedding.

All the introduced nonlinear methods were modified or extended for the usage in the
analysis of simulation results. For some, this means that only intrinsic parameters are
calibrated, such as the neighbourhood rule for Isomap. But, for others, fundamental
changes were made, such as the scaled aggregation of the alignment for LTSA or the
adaptive tangent space dimension in PTU. Thus, the performance may differ from
the base approaches in the respective literature.
To be used in a Comparative Analysis, the nonlinear methods needed the addition of
importance factors and virtual simulations. For LM approaches, importance factors
were calculated by the scaling method described in Section 3.3.2.2, which aims to
make the embeddings locally distance preserving. For all other methods, these were
obtained from an EVD decomposition of a squared and double centred distance matrix
of the MDS step, either because it was an MDS method or because classic metric MDS
was used on the low dimensional coordinates as a post processing step.
The virtual simulations were either computed by the LAI method of Section 3.3.3.2
for tangent-based DRMs, namely LTSA, PTU and PTNLM, or via the LLI approach
for all other methods. Here the version with an additional distance penalty described
in Section 3.4.3.2 was used for Isomap, ENLM and GNLM.



4 Difference Dimensionality Reduction
In the last section several DRMs and their base models have been introduced. The
concept of importance factors to determine the number of effects and their function
in the low dimensional representation of the data was explained. This section elab-
orates how the correlation of effects on different parts, post values or states can be
investigated utilising these low dimensional coordinates and their importance fac-
tors. This process of Difference Dimensionality Reduction (DDR) is introduced for
the linear case first because a difference operation is already existing in literature
[TM10], [BBT13]. Afterwards, this linear difference operation is generalised in order
to transfer the methodology to nonlinear methods. Two specific implementations of
this general difference approach are derived, motivated by the DRMs introduced in
the last section. Both methods can be improved by a normalisation enhancement
which is described subsequently. This section is concluded with a brief summary of
the properties of the methods and the DRMs to which they can be applied. This
summary highlights the distinction between the new approaches and the original
process.

4.1 Difference Principal Component Analysis
The process of Difference Principal Component Analysis (DPCA) was first published
in 2010 by Clemens-August Thole, Igor Nikitin, Lialia Nikitina and Tanja Clees
[TNNC10] and is a linear method to investigate the dependence between two data
sets. The DPCA is implemented in the commercial software DIFFCRASH and is
filed as a patent [TM10].

4.1.1 Basic Definitions

The DPCA’s base idea is to determine the correlation of underlying effects of one
data set with the other data set in a two-step approach.
The first data set Y ∈ RD×s of s samples with an initial large dimension of D is
referred to as the source. Under the assumption of a linear generating function, it is
in a first step decomposed into its underlying d effects by the truncated SVD in the
linear PCA approach, see also Eq. (3.6):

Y ≈ Yd := U |dΣ|d(V |d)T , with d < s

Each row of the right matrix V |Td ∈ Rd×s is associated with an effect or mode, as
described in Section 3.2. This means that an effect is defined by the samples in
which it is manifesting through the weights of the linear combination given by the
corresponding row.
In the second step, the relation to an additional target data set is investigated.
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Definition 4.1 (Source and target data set)
Given a so-called source data set Y ∈ RD×s, an additional high dimensional data set
Y ∈ RD×s

Y =: (Y1 . . . Ys) , with Yi ∈ RD ∀ i ∈ {1, . . . , s}
with possibly different dimension D 6= D but identical number of samples s is called
the target of the difference operation.

Specifically, the correlation to the first 1 ≤ e ≤ d effects of the source are determined
by “subtracting” [TNNC10] them from the target. This is done by comparing the
eigenvalues of the original Gram matrix GY ∈ Rs×s of the target data set with the
positive eigenvalues of the τ -modified Gram matrix GY,V |e,τ .

Definition 4.2 (τ -modified Gram matrix)
Given a weight factor τ ∈ R, a diagonal matrix Σ|e, a matrix V |Td ∈ Rd×s with
orthonormal columns and a Gram matrix GY ∈ Rs×s with

GY = 1
D
YTY

the τ -modified Gram matrix GY,V |e,τ ∈ Rs×s is defined as:

GY,V |e,τ := GY − τV |eΣ|eV |Te
V orth.= GY − τ

 e∑
i=1

σiviv
T
i

 (4.1)

Here, V |e and Σ|e are both obtained from the truncated SVD, where the number of
effects e can be chosen by the analyst, usually under consideration of the importance
factors. A lower bound for the weight factor τ is later given in Eq. (4.5) of Section
4.1.3, though it is usually overestimated in practical applications.
The eigenvalues of these two matrices are used to quantify the correlation by com-
puting and evaluating two difference measures.

Definition 4.3 (Difference measures)
Given two symmetric matrices GY , GY,V |e,τ ∈ Rs×s and their EVDs

GY =: V diag (µ1, ..., µs)VT

GY,V |e,τ =: Wdiag (λ1, ..., λs)WT

with corresponding eigenvalues µi and λi in descending order, the functions

δspec
(
GY , GY,V |e,τ

)
:= 1−

√
max{λ1, 0}
√
µ1

(4.2)

δvar
(
GY , GY,V |e,τ

)
:= 1−

∑s
i=1 max{λi, 0}∑s

i=1 µi
(4.3)

are called difference measures.
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The first difference measure δspec quantifies the relative reduction in terms of the
spectral norm of the input data set ‖Y‖2 = √µ1. This norm is an indicator for the
maximum scatter of the data set because of its geometric interpretation as the max-
imum stretch factor: Any vector multiplied by this matrix can be elongated at most
by this factor. Furthermore, the square root of the first eigenvalue is also the largest
importance factor in the linear case.
While the first difference measure is already used in several publications, for example,
[TNNC10] or [BST15], the second difference measure was newly introduced in this
work. As described in Section 3.2.2, the eigenvalues contain the information about
the variance of the data set and their sum is the total variance. The second differ-
ence measure δvar thus quantifies the relative reduction in terms of total variance of
Y . Together, these two measures express which portions of the second data set are
correlated to the e effects of the first data set.

The core assumption is that the data was generated with a linear function and the
SVD is returning the correct underlying modes as well as number of effects d. In the
case of a nonlinear generating function, the number of effects is usually overestimated,
and the modes can represent a fraction or a mixture of underlying effects, which is
demonstrated later in Section 5.1.3.

4.1.2 Application to Simulation Results

The DPCA was developed specifically for the analysis of simulation results. The
source of the operation is always an extracted post value on a part at a number of
states in the results. Here, a part is an arbitrary subset of nodes or elements as intro-
duced in Section 3.2.3. It could, for example, be the displacements of all nodes in a
group at one or more states. This group may consist of several PIDs or a user-defined
set at crucial states. Alternatively, it could also be the internal energy of the elements
in a vital area.
To increase the comparability among different parts and to decrease the sensitivity
to the size of the part the Gram matrices are generally normalised through division
by the square root of the number of values used in the underlying vector-vector mul-
tiplications. This number of values is usually the number of elements multiplied with
the number of states, though more complex combinations are theoretically possible.
The target is also a post value on another part and possibly a different state of the
simulation results. In the commercial version, the difference operation was limited to
using the same post value on source and target, though this is purely for implemen-
tation reasons and no theoretical requirement. As findings from this work have been
integrated into the product version, this limitation has been removed.
One important requirement for the DPCA to yield meaningful results is that the sam-
ples are extracted from the same set of simulations in identical order as the source:
Since effects are defined as linear combinations of these samples, they can be eval-
uated on all parts, states, and post values. If the samples and their order is fixed
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the correlation between those entities can be determined and “subtracted” by the
difference operation.
The challenging part of the analysis is the selection of these different parts, post
values, active states, and the correct number of effects for the target as well as for
the source. The DPCA method was designed to aid experts like simulation engineers
in their work, which is the reason, why the target part is usually easy to find. It is
commonly one of the crucial parts for the simulation discipline of the user, which,
for example, may be an area of a car’s load bearing structures that shows variation
in the displacements or the internal energy in a set of occupant safety simulations.
When the target part and value are identified, the states for the analysis need to be
chosen.
Although theoretically a set of multiple states is possible, the analysis is usually con-
ducted for a single state. This is mostly due to the fact that the analyst wants to
identify isolated effects. If multiple states are considered in the analysis, multiple ef-
fects can be merged and obfuscate the underlying structure. The importance factors
can be consulted to determine the correct states.
In Fig. 4.1 the development of the first three linear importance factors over time is
visualised. This development can be computed by performing the DR for each state
and compute the importance factors for low dimensions or modes for every state.
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Figure 4.1: Example of the importance factors over time for the Sil-
verado longitudinal rails example featured in Chapter 3. The curves
represent the importance of the first, second and third coordinate
direction in the different states. As this example only contains three
simulation results, the third curve is constantly equal to zero.

Such development curves can be used to identify possible candidates for the analysis
states. A change in the behaviour of the model can usually be found in local maxima
or steep increases of these curves. When searching for a suitable state for the target
of the analysis, the analyst should pick a state that is some time after the start of the
variation, but still after it had time to manifest. Possible states for the first mode,
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represented by the continuous line in Fig. 4.1, would be at around states 60 to 67
as they are at a point of the curve with large importance factors, but before the two
peaks at states 70 to 85. Selecting states at local peaks is usually not recommended
because the decreasing gradient indicates the starting of one or more stabilising ef-
fects.
Possible states for source parts of the analysis should trivially be picked before the
target state. Beyond that, however, it is recommended to select a state shortly before
a peak or further increase of the importance factor. Possible states for the second
mode, represented by the dotted line in Fig. 4.1, would be around states 25 to 27 as
they are at the beginning of the curve, but with a significant size at this time and
before the local maximum at around state 30.
Once the source and target with corresponding states are identified, the actual dif-
ference operation itself is performed.

4.1.3 Connection to Orthogonal Projection

The difference operation in the DPCA approach is closely connected to the projection
onto the orthogonal complement of a set of vectors.
Definition 4.4 (Orthogonal complement projection)
Given a matrix V |e ∈ Rs×e, the symmetric matrix P ∈ Rs×s

P := Is − V |eV |Te
is called the projection onto the orthogonal complement of V |e., with P 2 = P and
PV |e = 0.
Since this matrix P is a projection, it holds that its eigenvalues are always either 0 or
1, and since it is an orthogonal projection, it also holds that im(P ) ⊥ ker(P ) [LM12].
Multiplying the Gram matrix GY from both sides with this projection P is the same
as projecting the data set first and calculating the Gram matrix afterwards:

PGYP = 1
D
PTYTYP = 1

D
(YP )T (YP ) = GYP (4.4)

The relation of the Gram matrix GYP for the projected data set and the modified
matrix GY,V |e,τ of the DPCA is formulated by the following theorem.
Theorem 4.1
Under the assumption that τ is chosen such that

τ ≥ ‖GY‖2

σe
∈ R (4.5)

holds, the following relation is existing between the projected Gram matrix of Eq. (4.4)
and the result of the difference operation in Eq. (4.1):
Eigenvectors for positive eigenvalues of GYP can only be eigenvectors with positive
eigenvalues of GY,V |e,τ and eigenvectors for zero eigenvalues of GYP can only be eigen-
vectors with non-positive eigenvalues of GY,V |e,τ .
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Proof. Let w ∈ Rs be an eigenvector of GYP such that GYPw = ηw and wTw = 1.
Since GYP is a Gram matrix, it is symmetric and positive semi-definite. Thus, its
eigenvectors w form an orthonormal basis of Rs. Furthermore with 1 ≤ i ≤ e it
follows that

GYP vi = PTGYP vi = PTGY 0s = 0 · vi
and thus, that all v1, ..., ve are eigenvectors of GYP with eigenvalues 0. Therefore, if
w ∈ Rs is an eigenvector of GYP , it holds that either Pw = 0s or Pw = w, because
of im(P ) ⊥ ker(P ).
Since the matrix is positive semi-definite, there are two possibilities for its eigenvalues
η. In the first case of η > 0 ∈ R, it holds that Pw = w and vT

i w = 0 ∀1 ≤ i ≤ e and
thus the product of w with GY,V |e,τ is

wTGY,V |e,τw = wT
(
GY − τV |eΣ|eV |Te

)
w

= wTGYw − τwTV |eΣ|eV |Tew
= wTPTGYPw − τ 0T

e Σ|e0e
= η

meaning that if w is an eigenvector of the τ -modified Gram matrix the associated
eigenvalue would be η as well.
In the second case, where η = 0 ∈ R there are two subcases: In the first subcase were
Pw = 0s, it holds that V |eV |Tew = w and that the scalar product can be estimated
as:

wTGY,V |e,τw = wT
(
GY − τV |eΣ|eV |Te

)
w

= wTGYw − τ
e∑
i=1

σiw
Tviv

T
i w

≤ µ1 − τσe
e∑
i=1

wTviv
T
i w

= µ1 − τσe
4.5
≤ µ1 −

‖GY‖2

σe
σe

= 0

For the second subcase where Pw = w the following holds

wTGY,V |e,τw = wT
(
GY − τV |eΣ|eV |Te

)
w

= wTGYw − τwTV |eΣ|e0e
= wTPTGYPw

= 0

With the last case complete it is proven that eigenvectors for positive eigenvalues of
GYP can only be eigenvectors with positive eigenvalues of GY,V |e,τ and eigenvectors
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for zero eigenvalues of GYP can only be eigenvectors with non-positive eigenvalues of
GY,V |e,τ .

Because of this relation an EVD restricted to positive eigenvalues will yield the same
result on both matrices GY,V |e,τ and GYP , if τ satisfies the lower bound given in Eq.
(4.5). Since the difference measures δspec and δvar are discarding eigenvalues λi < 0,
see Eq. (4.2) and Eq. (4.3), they would be the same for the τ -modified Gram matrix
as well as for the projected one.
This means that the DPCA is eliminating those parts of the second data set, which
are correlated with vectors associated with the effects of the first data set. Hence only
the uncorrelated portions of information remain in the target data set. The elimi-
nation is achieved by projection along the vectors onto the span of their orthogonal
complement, but here all vectors are expressed as linear combinations of the second
data set, see Fig. 4.2 for a visual example.
There are some benefits and drawbacks in performing the weight-based Gram matrix
modification over the orthogonal projection. The first benefit of the modification is
that only symmetric matrices are involved in each step. This allows the operation
to be carried out very efficiently, both in terms of memory requirements and the
number of instructions, as only vector-vector multiplications and no matrix-matrix
multiplications are required. A second advantage is that for a fixed τ subtracting
events with eigenvalues close to 0 does not yield a big impact. This prevents the user
from subtracting unimportant effects that can represent noise in the data.
For the orthogonal projection, caution must be taken not to subtract too many ef-
fects, which can be emphasised with a simple example: Because the coefficient matrix
V is orthogonal, subtracting all s effects would eliminate the complete data set in
any case, whereas the τ modification only considers eigenvectors referring to non-zero
eigenvalues. In practice for the analysis of node displacements, a default value of
τ = 10 000 is usually a good choice and is used by many analysts as it is the default
value used by DIFFCRASH software.
But this weight factor of τ can also be a major disadvantage: Since it depends on
the fraction of two eigenvalues of different data sets, it can lead to instabilities. This
could be the case, if one data set shows large deviations and another one only small
differences. If the eigenvalues in the numerator and denominator are very different,
τ needs to be chosen very large and the default value might be too small. However,
if it is chosen too large, summing up all terms in Eq. (4.1) on a computer with
limited precision will basically overwrite the content of GY . This problem is not very
susceptible to the sizes of the underlying parts, since the input data is divided by
this number, see Section 3.2.3, but it can be very critical, especially if different post
values are involved.
In this work, the orthogonal projection is used since the investigated sets rarely ex-
ceed or even reach thousands of simulations, which is nowadays not a problem in
terms of matrix-to-matrix multiplications, so the first benefit is not necessary. More-
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over, the correlation between different post values will be investigated, which was not
done in earlier work and poses a challenge in the choice of the correct parameter τ .
Additionally, the number of effects was carefully chosen to be small enough so that
not noise effects are subtracted.
A graphical example of the orthogonal projection and how it is affecting the data
is given in Fig. 4.2. The first row shows the effects on source data set X and the
second row shows the impact onto a target data set Y . As the modes are defined
through linear combinations v1, v2 of the sample points, the source modes can also
be expressed as a linear combination of the target data. The difference operation(
Is − v1v

T
1
)

is projecting the data points along the original modes onto the span of
the complement vector, which may no longer be orthogonal on the target data set
Y .
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Figure 4.2: Visual example of the DPCA operation: The arrows
represent the modes of the source but expressed as linear combina-
tions of the sample points. The circles are the original data points,
and the squares are the images of the projection onto the orthogonal
complement of the respective mode, which is defining the difference
operation.
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4.2 Generalised Difference Dimensionality Reduction
As described in the last section, the aim of the DPCA method is to remove those
portions of a data set that are correlated with e effects that are defined as a linear
combination of samples. These effects were determined utilising the low dimensional
embedding X obtained by a specific DRM. In this section, this concept is firstly
generalised in order to secondly extend it to other DR approaches.
Given a source data set Y ∈ RD×s and its low dimensional embedding X ∈ Rd×s such
that:

Y = F (X)

with X =
(

X|e
X|d−e

)

It is assumed without loss of generality that the first e effects are to be subtracted.

Definition 4.5 (Generalised Difference Dimensionality Reduction)
Given a low dimensional embedding X ∈ Rd×s, the Generalised Difference Dimension-
ality Reduction of a target data set Y ∈ RD×s is defined as the matrix multiplication

∆DDRM (Y) := Y (Is −M)

with a suitable mode matrix M ∈ Rs×s.

Definition 4.6 (Ideal mode matrix)
An ideal mode matrix M ∈ Rs×s for the data set X ∈ Rd×s and the generating
function F : Rd×s → RD × s is a matrix with the following properties:(

0e
X|d−e

)
= X (Is −M) (4.6)

F (X (Is −M)) = F (X) (Is −M) (4.7)

The property in Eq. (4.6) means that the low dimensional coordinates associated with
the underlying e effects are eliminated from the source data set and thus the corre-
sponding rows are equal to zero after the operation. The second property shown
in Eq. (4.7) is demanding that the operation defined by right multiplication of
(Is −M) should be invariant under the function F ( · ) for the given intrinsic co-
ordinates X ∈ Rd×s. This way, the difference operation can be performed either in
the low or in the high dimensional representation and the subtraction of effects can
be evaluated at the complete samples, regardless of whether the underlying effects
were derived from a subset or on the complete data. If such a matrix M is found,
the difference operation can be evaluated on a new target data set Y by computing
the difference measures δspec and δvar as introduced in Eq. (4.2) and Eq. (4.3) for the
EVDs of the original Gram matrix GY and the Gram matrix for the data set modified
by the right-hand multiplication with the mode matrix GY(Is−M).
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In practise, the exact intrinsic coordinates X as well as the true generating function
F ( · ) are usually unknown and only the approximations X̃ and F̃ ( · ) computed by a
DRM are available. Trivially both, the computed data representation and the func-
tion, are depending on the DRM used to obtain this embedding. Hence the resulting
mode matrix M must be tailored to the utilised method and the assumptions on its
generating function F̃ ( · ).
For the PCA or classic metric MDS approach, the underlying data model is linear,
meaning that the function can be rewritten as a matrix multiplication from the left.
The approximations for the function and the d-dimensional coordinates are obtained
by a constrained SVD as described in Section 3.2

Y = F̃PCA
(
X̃
)

:= U |d · Σ|dV |Td

with F̃PCA ( · ) = U |d · and X̃ = Σ|dV |Td . The linear model ensures that the any
matrix multiplication from the right hand is in fact invariant under the function F̃PCA
satisfying the second property by design for all data sets X ∈ Rd×s. One suitable
difference matrix is MDPCA = V |eV |Te . The compliance with the first property can be
easily shown by performing the multiplication:

X (Is −MDPCA) = X
(
Is − V |eV |Te

)
= Σ|dV |Td

(
Is − V |eV |Te

)
= Σ|d

(
V |Te
V |Td−e

) (
Is − V |eV |Te

)

=
(

0e
X|d−e

)

The matrix (Is −MDPCA) is the orthogonal projection introduced as P in Section
4.1.3.
However, in practical application to real data while using nonlinear DRMs, this ap-
proach contains several challenges. First, the existence of a matrix M , such that
both properties in Eq. (4.6) and Eq. (4.7) hold, is not guaranteed: Since M ∈ Rs×s,
the number of variables is s2, while the total number of equations is (d+D) s. This
could yield an overdetermined system of equations with a required invariance for an
arbitrary, possibly nonlinear function F (·) and any data set X. Hence, the second
property is relaxed to:

F̃
(
X̃ (Is −M)

)
≈ F̃

(
X̃
)

(Is −M) (4.8)

This means that the invariance needs to hold only for the given data set, the specific
embedding X̃ calculated by the DRM and only approximately instead of exactly.
After relaxing the property, the next problem arises that M is often not unique, if no
further assumptions or constraints are active: Since the second set of equations given
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in Eq. (4.7) was removed, only the first set of Eq. (4.8) remains. With X̃ ∈ Rd×s,
the number of given equations is d · s, with d < s, but the number of variables is s2,
because M ∈ Rs×s, yielding an underdetermined system of linear equations. While
this ambiguity poses a problem from an algorithmic point of view, it is also a chance
to determine M in such a way that the resulting operation has several beneficial
properties. For example, choosing the matrix MDPCA for the linear approach yields
the orthogonal projection P as stated before. As explained earlier in Section 4.1.3,
this operation has the beneficial property of being a projection, which means that
P 2 = P holds. Thus, applying the identical difference operation multiple times is
the same as applying it once, which is helpful from an analysis point of view be-
cause it is less prone to usage errors, for example. Furthermore, the eigenvalues of
a projection are always either 0 or 1 and since P is an orthogonal projection, it also
holds that im(P ) ⊥ ker(P ) [LM12]. With these two traits it can be shown that
‖GY(Is−M)‖2 ≤ ‖GY‖2 and ‖GY(Is−M)‖F ≤ ‖GY‖F for any matrix Y [Gal13]. This
imposes the beneficial property that subtracting effects from a data set cannot in-
crease the variance in that data set and thus the difference measures δspec and δvar
are non-negative and smaller than one.
While the matrix MDPCA is well defined for the linear approach and has the two
beneficial properties mentioned before, computing the equivalent for the nonlinear
methods is more challenging and does generally not yield these beneficial properties.
A difference method utilising a matrix M that is complying with the properties de-
scribed in Eq. (4.6) and Eq. (4.8) is called a Generalised Difference Dimensionality
Reduction Method (DDRM). The goal of this section is to construct such matrices for
the nonlinear approaches introduced earlier that have similar, though not as strong
beneficial properties as the linear approaches.

The linear DPCA approach describes the mode that should be eliminated as a linear
combination of samples, which specifies the complete axis to be subtracted, see Fig.
4.2.
For nonlinear methods, this cannot be achieved for the full axis since it is nonlinear
and only a finite number of samples is given. The meaning of said axis can only be
interpreted at the available sample points and may change across the low dimensional
data space. For the nonlinear variants, the operation is broken down into how it is af-
fecting the individual points and defined by these responses instead. These responses
can be formulated as an update that leads from an origin to an image.
Definition 4.7 (Origin and image)
Given that a DRM computed the low dimensional point x̃i ∈ Rd, called origin, the
subtraction of the first e effects in the low dimensional data space results in the image
point:

x̂i :=


0e

x̃e+1,i
...
x̃d,i


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Definition 4.8 (Generalised mode matrix)
Given a low dimensional approximation X̃ ∈ Rd×s and the approximation for the
generating function F̃ : Rd×s → RD×s computed by a DRM, a matrix MDDRM ∈ Rs×s

is called generalised mode matrix, if the following properties hold for the i-th column
and all i ∈ {1, . . . , s}:

x̂i = X̃ (ei −mi)
F̃
(
X̃ (ei −mi)

)
≈ F̃

(
X̃
)

(ei −mi)

To apply the generalised difference operation, a suitable generalised mode matrix
MDDRM must be determined. With the origin and image known in the low dimensional
space, the construction ofmi solely depends on the assumptions on F̃ and this is where
the two approaches introduced in this thesis differ.

4.2.1 Difference Local Linear Interpolation

The first example of a Generalised Difference Dimensionality Reduction Method is
motivated by the LLE approach in combination with the LLI method for the eval-
uation of low dimensional data points, see Section 3.3.2. Essentially, the basic idea
of the newly developed Difference Local Linear Interpolation (DLLI) is to define the
generalised mode matrix MDLLI in terms of nearest neighbour weights derived from
the low dimensional embedding.
If the DRM used to compute this embedding is LLE or MLLE, the low dimensional
coordinates were determined such that the following holds:

F̃

 ∑
j∈N (yi)

wijx̃j

 ≈ F̃ (x̃i) = yi ≈
∑

j∈N (yi)
wijyj =

∑
j∈N (yi)

wijF̃ (x̃j)

This means that the generating function F̃ is approximately invariant for a certain
set of local linear combinations for LLE or for multiple specific sets in the case of
MLLE. The concept of DLLI is to use this invariance in the difference operation. In
order to utilise this property, two core assumptions need to be made.
Firstly, it is assumed that the invariance is approximately valid for all linear combi-
nations of nearest neighbours and not only for the fixed sets of weights.
Secondly, it is assumed, that the nearest neighbours can also be determined in the
computed low dimensional embedding, meaning that N (yi) can be replaced by N (x̃i).
It is important to note, that embeddings computed by the aforementioned DRMs are
in general only locally linear, i.e. they aim to preserve a fixed set of local linear
combinations in a least squares sense, which is not to be confused with piecewise
linearity. Thus, any other linear combination will in general not be preserved exactly,
and a mathematical proof for the two assumptions cannot be given. However, tests
have shown that the relations hold approximately, if the Dimensionality Reduction
succeeded in computing a viable embedding, which is demonstrated in the evaluation
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in Section 5.1.3. The first assumption is also fundamental for the work in [FZGK14],
where it was evaluated in combination with Isomap and showed promising results.
Changing the determination of the nearest neighbours from high to low dimensional
data space in combination with an interpolation was also investigated for several
DRMs in [Hah16], where it was shown, that it is applicable in several cases. Further-
more, the evaluation in Section 5.1.2 has also shown that using the low dimensional
nearest neighbours is a viable option. Thus, the two properties are assumed to hold
in order to introduce the new difference operation.
For each given origin point x̃i and its image point x̂i the corresponding entries of
the column mi of MDLLI can be determined in two steps: First, the low dimensional
neighbourhoods N (x̃i) and N (x̂i) are determined. Then, the interpolation weights
for the nearest neighbour reconstruction are calculated. In this calculation, the ap-
proach of the constraint LLI described in Section 3.4.3.2 was used, which penalises
large weights for nearest neighbours, which are far away. Here, the optimisation prob-
lem Eq. (3.40) is solved for x̃i and x̂i with their respective neighbours yielding the
two sets of weights vi, wi ∈ Rs, such that

x̂i ≈
s∑
j=1

vijx̃j , vik = 0 , ∀k /∈ N (x̂i)

x̃i ≈
s∑
j=1

wijx̃j , wik = 0 , ∀k /∈ N (x̃i)

With these weight vectors the desired column mi is given by the following relation:

mi := wi − vi (4.9)

This relation approximately yields the elimination property of Eq. (4.6) for the
corresponding column as is shown in the following. With ei ∈ Rs being the i-th unit
vector, it holds that:

X̃ (ei −mi) = x̃i − X̃mi

= x̃i − X̃ (wi − vi)

≈
s∑
j=1

wijx̃j −
s∑
j=1

wijx̃j +
s∑
j=1

vijx̃j

≈ x̂i

This means that the difference operation can be viewed as an update vector that is
added to the original node position. Starting and ending points of said update vector
are defined by the linear combination of the nearest neighbours and can hence also
be evaluated in the original high dimension Y as well as on a different target data set
Y .
A graphical example of this update is given in Fig. 4.3. In the left picture, the source
of the operation is shown. Both the designated origin x̃i marked by the circle and
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the image x̂i of this difference operation marked by the square are expressed as a
linear combination of their k = 3 nearest neighbours. In the right picture, the effect
on the target data set Y is shown. For visualisation means D = 2 is assumed. Here
origin and image are reconstructed in this representation as the linear combination of
the respective neighbours with the same weights as ∑s

j=1wijYj and ∑s
j=1 vijYj. The

update is the dotted line and calculated as the difference between these two points.
Finally, the square Y (ei −mi) is obtained by adding the update to the designated
data point Yi in this data set.
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(a) First mode X̃ (Is −MDLLI) on source X̃
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(b) First mode Y (Is −MDLLI) on target Y

Figure 4.3: Visual example of DLLI operation: The pictures show
an excerpt of the low dimensional representation of the data sets
with the two source modes highlighted as arrows. The circle is one
designated point and the dots other original data points. The square
is the image of the designated point, projected onto the orthogonal
complement of the first mode. The dashed line is the update defined
by this difference operation.

When applying this approach in combination with DRMs, several things need to be
considered:
First, the core of this method is the preservation of local linear combinations. Hence,
it should only be used with DRMs that reasonably comply with this property. While
the LLE variants are constructed with this aim, the work in [FZGK14] has shown
that this can also be true for methods that preserve pairwise Euclidean distances
between nearest neighbours such as Isomap, ENLM and GNLM.
Second, the construction of the neighbourhoods should match the original rule used
to compute the embedding. All methods introduced in Chapter 3 use the modified



4.2 Generalised Difference Dimensionality Reduction 75

k-rule, and hence all neighbourhoods for DLLI should be constructed by computing
the k nearest neighbours using the identical value for k.
Finally, interpolation with the additional distance penalty was chosen with the aim to
limit the result of the difference operation to the manifold. When removing variance
from a data set, the result should be a subset of the original data. The distance
penalty of Eq. (3.40) indirectly enforces a proximity to the nearest neighbours: Since
large weights are penalised, extrapolations far away from the given sample points are
also penalised.
With these additions, the DLLI is the first implementation of the generalised differ-
ence method that can be used in combination with nonlinear DRM approaches.

4.2.2 Difference Local Affine Interpolation

The second Generalised Difference Dimensionality Reduction Method is motivated
by the LTSA approach and its creation of virtual simulations by interpolation in a
local tangent space, which was introduced as LAI in Section 3.3.3.1. The core idea
of this new method, called Difference Local Affine Interpolation (DLAI), is to define
MDLAI in terms of local affine subspace weights.
All generalised difference methods utilise the low dimensional coordinates to define the
generalised mode matrix, which can be applied in the high dimensional representation
as well. Embeddings that are computed by the LTSA approach aim to preserve local
tangent spaces in a least squares sense. These tangent spaces are computed for each
point yi and its complete neighbourhood N (yi) = N (yi) ∪ {i} as defined in Eq.
(3.23) and Eq. (3.24). The matrix Yi, containing the high dimensional coordinates
for all points in this neighbourhood, is centralised and decomposed by a truncated
SVD, where the right singular vectors Wi are defining the tangent space, see Section
3.3.3.1. (

Yi − yi1T
|N (yi)|

)
≈: UiΣiW

T
i

Each point yi can be projected into its local tangent space and written as an affine
linear combination of the sample points:

y⊥i := Yiωi

The weights ωi ∈ R|N (yi)| for this affine combination of the projection y⊥i can be
computed by subtracting the local mean value yi and applying the pseudo inverse for
the truncated SVD of the centralised local data matrix Yi:

ωi := WiΣ−1
i UT

i

(
yi − yi

)
As the weight vectors ωi are in the span of Wi and this matrix has been used to
aggregate the global alignment matrix, the preservation of tangent spaces means that
the relative position of the point given by these affine interpolation weights is the
same in the high as well as in the low dimensional embedding. Hence, for the same
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weights ωi it holds that:

y⊥i = Yiωi

x̃i ≈ X̃ iωi

Additionally, since only information in the tangent space is preserved and differences
orthogonal to this space are discarded, it holds that:

QiΣ−1
i UT

i

(
yi − y⊥i

)
= 0|N (yi)|

Accordingly, the intrinsic coordinates for the projection are the same as for the original
data point. Under the assumption that the point is close to its projection into its
own tangent space, meaning that yi ≈ y⊥i , the following holds:

F̃

 ∑
j∈N (yi)

ωijx̃j

 ≈ F̃ (x̃j) = yj ≈ y⊥j =
∑

j∈N (yi)
ωijyj =

∑
j∈N (yi)

ωijF̃ (x̃j)

This means that in the case of an embedding computed by LTSA, the generating
function F̃ is approximately invariant for local affine interpolation weights of the
sample points, if the point can be reasonably approximated by its own tangent space.
Similar to the previous method, the DLAI aims to use this invariance in the difference
operation and also needs two core assumptions.
First, it is assumed that the invariance is approximately valid for all points x in the
affine subspace and not only for the given sample points x̃i.
Second, it is assumed that the nearest neighbours spanning the tangent space can
also be determined in the computed low dimensional embedding, so that N (yi) can
be replaced by N (x̃i).
For each given origin point x̃i and its image point x̂i the corresponding entries of
the column mi of MDLAI can be determined in two steps: First, the complete low di-
mensional neighbourhoods are determined. While N (x̃i) can be constructed without
modifications, the complete neighbourhood for the image point x̂i cannot be deter-
mined in the same way. Since it is not an original sample point, the union N (yi)∪{i}
is in general not meaningful as x̂i and x̃i can be far apart. Instead, the (k+1)-nearest
low dimensional neighbours are used to determine N (x̂i) for the image point.
With the neighbourhoods constructed, the subspace weights for the local affine in-
terpolation can be calculated. This calculation is done in the same manner as the
LAI given in Section 3.3.3.2: The matrix containing the low dimensional coordinates
of the nearest neighbours is centralised and then decomposed by an SVD, see Eq.
(3.30). Then, the interpolation weights can be computed with the pseudo inverse of
Eq. (3.31).
As explained in the last section, it is important to restrict the interpolations to the so-
lution manifold by preventing extrapolations far away from the sample points. Here,
these far extrapolations are prevented through a limitation of the subspace weights.
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For the sample points, the interpolation weights ωi in this specific subspace can be
retrieved directly from the SVD. These sample weights are used to determine a
bounding box in the subspace coefficients. The newly computed weights ω̃ for point
x ∈ {x̂i, x̃i} are then clamped to this bounding box, with component-wise min and
max:

ωmin := min
j∈N (x)

(ωj)

ωmax := max
j∈N (x)

(ωj)

ω̃ ← max (ωmin,min (ω, ωmax))

This process is performed for the origin and the image of each point and yields two
sets of weights vi, wi ∈ Rs, such that

x̂i ≈
s∑
j=1

vijx̃j , vik = 0 , ∀k /∈ N (x̂i)

x̃i ≈
s∑
j=1

wijx̃j , wik = 0 , ∀k /∈ N (x̃i)

These weights can be used to compute the corresponding i-th column mi of MDLAI
with the same relation as for the DLLI approach, as described in Eq. (4.9). Multi-
plying a data set by (Is −MDLAI) can also be viewed as an update vector added to
the original node position. A visual explanation of this update is given in Fig. 4.4.
In this figure, the left picture shows the effect of the difference operation on the source
data set X̃. The local tangent spaces for the origin x̂i and its three nearest neighbours
and the one for the four nearest neighbours of the image x̃i are computed. Both the
origin and the image of the designated point are then defined in the basis of their
respective local frames by computing the weights wij and vij. In the right picture
the impact on the target data set Y is shown. The two previously computed tangent
frames are also transferred to this data representation. The origin and the image are
then reconstructed in the local coordinates of their respective tangent spaces by linear
combination with the respective weights ∑s

j=1wijYj and ∑s
j=1 vijYj. The update is

the dotted line and calculated as the difference between these two reconstructions.
Finally, the square Y (ei −mi) is obtained by adding the update to the designated
data point Yj in this data set.
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(a) First mode X̃ (Is −MDLAI) on source X̃
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(b) First mode Y (Is −MDLAI) on target Y

Figure 4.4: Visual example of DLAI operation: An excerpt of the
data sets is shown with the two source modes. The circle is one
designated point and the dots other original data points. The square
is the image of the designated point, projected onto the orthogonal
complement of the first mode. The dotted arrows are the base vectors
of the local tangent frames and the dashed line is the update defined
by this operation.

Though the DLAI method is motivated by the tangent space preserving LTSA, it
can also be meaningfully applied to embeddings computed by other DRMs as well.
For example, the parallel transport variants PTU and PTNLM also approximately
preserve tangent spaces, see Section 3.4.4.1. Moreover, the affine interpolation weights
are a special case of nearest neighbour weights so the difference method can also be
reasonably used in combination with local weight-based approaches similar to the
DLLI.
This concludes the introduction of the two specific methods implementing the concept
of a Generalised Difference Dimensionality Reduction.

4.2.3 Normalisation Enhancement

The two introduced difference methods can be combined with an additional enhance-
ment that is motivated by the strong features of the original DPCA. These two
features originate from the equivalence to an orthogonal projection and are the fact
that multiple subtractions of the same effect yield the same result as a single subtrac-
tion, and the fact that applying the difference operation cannot increase the variance
in the target data. To guarantee both of these properties, a function must be a
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projection that is well defined by its kernel and its image, which must also be orthog-
onal to prohibit variance increase [Gal13]. But since the PCA is an optimal rank-d
approximation, see Section 3.2, no better vectors can be found to describe the vari-
ance than those vectors provided by the PCA. Hence, the nonlinear methods cannot
mirror these strong features and still improve on the linear approach. If a difference
operation is to improve the explained amount of variance per mode, these properties
need to be relaxed.

Even if the two properties cannot be fully guaranteed for nonlinear methods, the
adding of variance should be avoided as best as possible. In order to do this, the
norm of Is−M should ideally be limited. But since the effect on the given data set is
prescribed, there are not many options. A direct manipulation of e.g. the eigenvalues
is affecting the function too much.
What can be done, is a limitation of the left scalar products by trimming the norm
of the columns of ci ∈ Rs of Is −M :

Is −M =: (c1 . . . cs)

This can be achieved for i-th column by manipulating the construction of the matrix.
For each point in the difference operation the origin and the image position are
expressed as linear combinations of the given sample points:(

0e
x̃i|d−e

)
= x̂i =

∑
j

vijx̃j (4.10)

x̃i =
∑
j

wijx̃j

Which means that according to Eq. (4.9) the i-th column can be rewritten as:

ci = ei − wi + vi

Furthermore, an additional trivial linear combination for the origin is available with
x̃i = 1 · x̃i. Thus, for all ψi ∈ R the combination

x̃i = ψix̃i + (1− ψi)
∑
j

wjx̃j (4.11)

is also a valid approximation. With the linear combinations of Eq. (4.10) and the
trivial combination a new column ci(ψi) ∈ Rs is introduced. The aim is to choose ψi
such that the norm of the new column is less than one. Its entries are

cii(ψi) := 1 + vii − ψi − (1− ψi)wii
cij(ψi) := vij − (1− ψi)wij , ∀j 6= i



80 4 Difference Dimensionality Reduction

and for ψi = 0 it is equal to the original column with ci(0) = ci. This way the norm
of the i-th column is a function in ψi, too

‖ci(ψi)‖2
2 = cii(ψi)2 +

∑
j 6=i

cij(ψi)2 (4.12)

= (1 + vii − ψi − (1− ψi)wii)2 +
∑
j 6=i

(vij − (1− ψi)wij)2

First the norm of the unmodified column with ψi = 0 is evaluated. If this value is
larger than one, the following minimization problem is solved:

min
ψi∈R

‖ci(ψi)‖2
2 − 1 (4.13)

Theorem 4.2
With the following scalar values αi, βi, γi ∈ R for shorter notation,

αi :=
∑
j

vijwij

βi := 1− 2wii +
∑
j

w2
ij

γi :=
(
1 + (vii − αi) β−1

i

)2
−
1 +

2vii − 2αi − 1 +
∑
j

v2
ij

 β−1
i


the solution ψ∗i ∈ R to Eq. (4.13) with ci(0) > 1 and βi 6= 0 is given by

ψ∗i := 1 + (vii − αi) β−1
i ±

√
max(γi, 0) (4.14)

Proof. For the equality of ci(ψi) and 1 the quadratic form can be analytically solved:

1 != ‖ci(ψi)‖2
2

⇔ 1 = (1 + vii − ψi − (1− ψi)wii)2 +
∑
j 6=i

(vij − (1− ψi)wij)2

⇔ 1 = 2
vii − ψi − (1− ψi)wii − ψivii + ψi(1− ψi)wii − (1− ψi)

∑
j

vijwij


+
∑
j

v2
ij + (1− ψi)2 ∑

j

w2
ij + ψ2

i + 1

By subtracting 1 and with ιi := ∑
j v

2
ij and ρi := ∑

j w
2
ij being the squared lengths of

the weight vectors for image and origin, this expression can be simplified to:

⇔ 0 = 2
vii − ψi − (1− ψi)wii − ψivii + ψi(1− ψi)wii − (1− ψi)

∑
j

vijwij


+ ιi + (1− 2ψi + ψ2

i )ρi + ψ2
i

⇔ 0 = −2ψi

1− 2wii + ρi + vii −
∑
j

vijwij


+ (1− 2wii + ρi)ψ2

i + ιi + ρi + 2vii − 2wii − 2
∑
j

vijwij
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With the introduction of αi := ∑
j vijwij and βi := 1 − 2wii + ρi the expression can

be further altered, if the latter is non zero:

⇔ 0 = −2ψi (βi + vii − αi) + βiψ
2
i + ιi + βi − 1 + 2vii − 2αi

βi 6=0⇔ 0 = ψ2
i − 2

(
1 + (vii − αi) β−1

i

)
ψi + (ιi + 2vii − 2αi − 1) β−1

i + 1 (4.15)

Eq. (4.15) is a quadratic equation in monic form and its scaled discriminant

γi :=
(
1 + (vii − αi) β−1

i

)2
−
(
1 + (ιi + 2vii − 2αi − 1) β−1

i

)
(4.16)

can be negative in some cases. In order to solve the minimisation problem of Eq.
(4.13), the closest possible real solution is chosen. Finally, the optimal ψ∗i can be
obtained as

ψ∗i := 1 + (vii − αi) β−1
i ±

√
max(γi, 0)

With this optimal solution, the column of M can be reconstructed with the modified
weights for the origin, such that the column norm is limited.

1: for all columns ci in (Is −M) do
2: if ‖ci(0)‖2

2 > 1 then
3: if βi > 0 then
4: Compute ψ∗i according to Eq. (4.14).
5: Update the weights for the origin, see Eq. (4.11) and reconstruct the col-

umn.
6: end if
7: end if
8: end for

Algorithm 4.1: Normalisation Enhancement Algorithm for Gener-
alised Difference Methods

While this updated formulation does not affect the difference operation on the source
data set, it can have a big impact on the target data set, especially, if the approxi-
mation of the origin by the weights is not very precise.

4.3 Recapitulation
In the previous sections in this chapter, the base concept of the Generalised Differ-
ence Dimensionality Reduction was introduced. In this process, the correlation of a
target data set with a fixed number of low dimensional modes of a source data set is
investigated. This is achieved, by first computing a generalised mode matrix MDDRM
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for the source data set. Then the target data set is multiplied with this mode matrix
and the difference measures δspec and δvar are computed for the result. For this gen-
eral concept of a difference operation, three specific implementations, with different
constructions of the mode matrix have been explained in this section. One of these
is linear and two are nonlinear methods.
The linear DPCA is based on the orthogonal projection onto the orthogonal comple-
ment of the modes, which are to be subtracted and can be described globally by a
linear combination of samples. It is the only method featured in this work that al-
ready exists in literature. The equivalence to the orthogonal projection imbues some
strong beneficial properties, but unfortunately, the linear model means that it is only
meaningfully applicable to linear manifolds.
The newly introduced DLLI method is based on local neighbourhood weights. For
each sample point, the difference operation is described exclusively by the nearest
neighbours of the origin and the image of the modification vector. Thus, the method
is only meaningfully applicable to nonlinear DRMs that preserve these linear com-
binations of nearest neighbours reasonably well. An additional regularisation in the
computation of the weights is penalising large weights for relatively distant points,
indirectly enforcing proximity to manifold at the risk, of probably having a less pre-
cise position of the points.
Finally, the new DLAI approach is based on sample positions in local tangent spaces.
Again, the difference operation is described in terms of origin and image of the modi-
fication vector, but here the points are described by their position in the local tangent
frames. These tangent frames are determined by local PCAs and the points are then
projected into the spanned subspace of the first principal components. Large weights
for base vectors of the subspace are allowed up to a bounding box, thus explicitly en-
forcing the proximity. The position in this tangent space is exact up to this bounding
box, though the projection into this space may discard some information. Although
the method was designed for DRMs that preserve these local tangent spaces suffi-
ciently well, it can also be applied to methods, which preserve local weights, since the
positions in the subspaces are also expressed in local neighbour weights.
Finally, both linear approaches were extended by an additional normalisation en-
hancement to mitigate the drawback of not being an orthogonal projection like the
linear DPCA.
With the addition of nonlinear difference methods, the nonlinear DRMs can be utilised
in the Extended Workflow.



5 Evaluation
The DRMs explained in Chapter 3 were altered from their base versions in literature
and the nonlinear difference methods introduced last in Chapter 4 are completely new,
therefore the performance of both must be carefully evaluated. Hence, the approaches
in this chapter are thoroughly tested under certain aspects. Before their capabilities in
the Extended Workflow on complex simulation data are evaluated, their performance
is first tested individually on simpler artificial data sets. The performance on these
simple data sets is also used to select methods for the actual analysis task. All
methods introduced in Chapter 3 are evaluated on the simple artificial examples and
depending on their performance, some are discarded for further investigations.

5.1 Performance on Artificial Data
Artificial data sets are created to contain certain properties and are widely used in
literature to evaluate DRMs [ST02], [LV07], [ZQZ11], [BYF+19]. These data sets
provide the means to test the two steps of the analysis separately, first the Dimen-
sionality Reduction and then the difference operation. Furthermore, the performance
of different methods can be compared and evaluated with regard to the ideal result
that is known for these data sets. In this section, a selected set of artificial examples
is tested to evaluate the performance of the new methods on manifolds with spe-
cific properties. All utilised artificial examples are introduced in this section, but are
additionally summarised in Section B.1 of the appendix.

5.1.1 Creating Artificial Data Sets

In this thesis, artificial data sets are created by first sampling intrinsic coordinates
in the unit hypercube [0, 1]d ⊂ Rd and then applying known generation functions
f : [0, 1]d → RD. This has two important effects:
First, all data sets of same sampling mode and same intrinsic dimension are intrin-
sically the same. This means that the original low dimensional coordinates for the
sample points are identical and only the high dimensional representation is different.
This property is crucial for testing the difference operations.
Second, this way of creating data sets increases the reproducibility of the tests per-
formed: Because both sampling and generating function used to calculate the high
dimensional representation can be explicitly stated, an interested reader could recre-
ate the identical data sets.

Several different kinds of sampling a data space are known in literature and a good
overview is given in [SS06]. Three of the methods introduced in [SS06] are used in this
work: The so-called Deterministic, the “Quasi-Random” and the “Pseudo-Random”
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sampling methods. Though all of these are in fact deterministic, they have different
properties.
Data, referred to here as deterministic, is sampled by placing it in a regular pattern
in order to provide equal coverage of the domain. In this work, the data is aligned
in a grid that is equally spaced in all directions. This equal spacing guarantees a
space-filling distribution of the samples. The regularity of this pattern has the ben-
efit of providing easy means of following the local effects of the generating function,
since the pattern can be identified also in the high dimension. But it can also pose
a challenge, especially if one dimensional direction is eliminated, several points can
collapse onto each other.
Pseudo-Random data is usually generated using a random number generator with
the aim of getting a uniform distribution U(0, 1). It has the benefit of not generating
regular patterns and also no repetitions. Here it was generated with the build in
”rand”-function of the C-Standard-lib version ”GNU libc 2.17” and a seed of 1, see
[Fre20]. A drawback of this random number approach is that data can have dense
clusters on the one hand as well as holes in the domain on the other hand.
Quasi-Random sampled data can be viewed as a compromise between the two previous
methods. In this approach, the data is generated in an incremental way, adaptively
refining the sampling of the domain, without repetition of values or obvious patterns.
One possibility to create such samples are Latin hypercube samplings that provide
uniform coverage and avoid correlation patterns [HTP06]. Since an even coverage can
be achieved by the deterministic sampling and correlation patterns are avoided by
the Pseudo-Random sampling, a different approach was chosen as a compromise in
this work. Here, the e-th coordinate direction xie is sampled using a Halton-Sequence
[SS06] for the e-th prime number. This sequence can be computed utilising the ex-
pansion of a number n ∈ N in base b ∈ N, with the coefficients ck ∈ N and the
radical-inverse function for this base νb : N→ [0, 1) ⊂ R:

n =:
j∑
0
ckb

k

νb(i) :=
j∑

k=0
ckb
−k−1

For a selected dimension d and a set of prime numbers {p1, ...pd} the i-th value of the
corresponding Halton-Sequence can be computed as:

xi := (νp1(i), . . . , νpd
(i))T (5.1)

All data sets investigated in this thesis have an intrinsic dimension of d ≤ 6 and
the Quasi-Random sampled data was generated using the Halton-Sequence for prime
numbers {2, 3, 5, 7, 11, 13}.
Examples for the different sampling methods are visualised in Fig. 5.1. For better
perception, all low dimensional data points are sorted lexicographically and coloured
according to their number.
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Figure 5.1: Example of sampling low dimensional data. A total of
1 225 two dimensional points were sampled with the three given sam-
pling methods. The colour reflects the sample number, starting dark
at one and and getting lighter as the number increases.

Two possible examples of artificial data sets with intrinsic dimension d = 2 are the
Plane and the S-Shape, which are used in the further evaluation sections.
The Plane example is an ideal two dimensional linear manifold. Given the low di-
mensional coordinates x1, ..., xs ∈ [0, 1]2 the high dimensional representation of the
data set can be created for any desired large dimension D ≥ 2 using the generating
function fplane : [0, 1]2 → RD:

fplane

(
x1
x2

)
:=


3x1 − 1.5
2x2 − 1

0D−2

 (5.2)

The results for the three different sampling methods are visualised in Fig. 5.2. They
show the coloured rectangle in which the centre of the mass is approximately in
the origin of the coordinate system, depending on the distribution of the sample
points. One edge of the Plane, which is associated with the first high as well as low
dimensional coordinate, is longer than the other, which is associated with the second
coordinates.
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Figure 5.2: Linear example of artificial data. The 1 225 low dimen-
sional data points of Fig. 5.1 are projected to the high dimensional
space using the Plane function of Eq. (5.2). Displayed are the first
three high dimensional coordinates. Equivalent to Fig. 5.1, the colour
corresponds to the sample number.

The second intrinsically two dimensional manifold example is the S-Shape data set.
This nonlinear manifold can be created from given low dimensional sample points
x1, ..., xs ∈ [0, 1]2 with the generating function fsshape : [0, 1]2 → RD and φsshape :
[0, 1]→ R for any D ≥ 3.

φsshape(x1) :=
{ 3

4(cos(3πx1)− 1) , x1 >
1
2

−3
4(cos(3πx1)− 1) , x1 ≤ 1

2

fsshape

(
x1
x2

)
:=


φsshape(x1)
3
4 sin(3πx1)

2x2 − 1
0D−3

 (5.3)

The first two high dimensional coordinates y1 and y2 depend on the first intrinsic
coordinate x1 only and describe the position of the sample point on the arc of a curve
shaped like the letter “S”. The third high dimensional coordinate y3 is associated
with the remaining low dimensional coordinate x2 and describes the position in the
extrusion direction of the curve, as can be seen in Fig. 5.3.
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Figure 5.3: Nonlinear example of artificial data. The 1 225 low di-
mensional data points of Fig. 5.1 are projected to the high dimen-
sional space using the Plane function of Eq. (5.3). Plotted are the
first three high dimensional coordinates. Equivalent to Fig. 5.1, the
colour corresponds to the sample number.

Since the data points were first identically sampled in the low dimension and only
thereafter projected into the larger space, this means that the data in Fig. 5.2.a is
intrinsically the same as Fig. 5.3.a, although the high dimensional representation
is different. The same holds for Fig. 5.2.b and Fig. 5.3.b, which are intrinsically
identical, as well as for Fig. 5.2.c and Fig. 5.3.c. This is crucial for the evaluation of
the difference methods in Section 5.1.3. But before the second step of the difference
operation is investigated, the first step of Dimensionality Reduction is evaluated.

5.1.2 Assessing Embedding Quality

In order to evaluate the Dimensionality Reduction step, it is important to assess the
quality of the obtained low dimensional embedding. As the second step is defined
on the basis of the calculated coordinates, it is important to yield good embeddings,
though different measures could be consulted to evaluate whether an embedding is
good or bad. Two measures are employed in the following.
For artificial data sets, the desired outcome is usually known, thus the DRM results
can be compared with the target, both in terms of importance factors and coordi-
nates. In this section, two data sets are utilised to investigate the performance of the
different DRMs: a linear and a nonlinear data set.
The linear example is the Plane introduced in the last subsection, see Fig. 5.2. In lit-
erature, nonlinear methods are seldom evaluated on linear manifolds, since the PCA
already yields the rank-d optimal embedding, see Section 3.2, there is no need to ap-
ply more complex methods. Because PCA or classic metric MDS is optimal for linear
manifolds, its result is the desired outcome of the DR. As the desired outcome is
known, the distance to this reference can be computed for the results of the nonlinear
methods, in order to evaluate their performance. Since the nature of the manifold is
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unknown in practical applications, the nonlinear methods should ideally also perform
reasonably well on linear manifolds.
The Plane data set is intrinsically two dimensional, but here it is embedded using the
linear function in Eq. (5.2) into a higher dimensional space with D = 5. The newly
computed coordinates y1 have a direct linear dependency on the intrinsic coordinates
x1, as well as y2 and x2 respectively. After calculating these high dimensional rep-
resentations, the different DRMs are applied. During this application, the methods
were instructed to compute data sets of low dimension d = 4. This target dimension
was intentionally overestimated compared to the original intrinsic dimension of two.
The first assessment is, whether the number of significant importance factors matches
the two of the linear approach and if the sizes are also similar. All methods used a
neighbourhood size of k = 10 which is in literature often used for intrinsically two
dimensional data sets, e.g. [ZW07], [BYF+19].
The resulting importance factors are displayed in Tab. 5.1, where an entry of “-”
indicates that the DRM determined fewer dimensions. For the LMs the newly de-
veloped distance scaling approach, as described in Section 3.3.2.2, was used. For the
MDS and NLM methods, the eigenvalues of the double centred dissimilarity matrix
were used, as described in Section 3.4.3.2 and Section 3.5 respectively. Most of the
DRMs match the desired result of the linear PCA very well. Only the LLE, Isomap
and GNLM approaches have a noticeable but small third importance factor.

PCA LLE LTSA MLLE Isomap PTU ENLM GNLM PTNLM
Imp. factor 1 27.371 26.944 27.351 27.363 28.045 27.371 27.371 28.050 27.371
Imp. factor 2 18.249 18.156 18.258 18.252 18.652 18.249 18.249 18.630 18.249
Imp. factor 3 - 2.391 0.569 0.301 3.070 - - 2.590 -
Imp. factor 4 - 0.001 0.001 0.002 - - - - -

Table 5.1: Importance factors for the Plane data set computed by
the different DRM approaches with k = 10.

For a fixed method, the importance factors for the different dimensions are of different
magnitude. This means that the low dimensional coordinates are well defined up to
their sign. Hence, these coordinates can be compared to the desired result, after the
orientation has been validated by a scalar product and corrected if necessary. The
result of this comparison is displayed in Fig. 5.4. Since the PCA is the reference, the
error is zero for all points and because the target dimension is large enough to preserve
all pairwise Euclidean distances, ENLM yields the same result, see Section 3.5.2.
The manifold is well sampled, and the neighbourhood size is sufficient to correctly
estimate the tangent spaces, hence the PTU and PTNLM are linearly precise, see
Section 3.4.4.1, and also yield the correct result. The graph-based approaches yield
the worst results, while the LMs are mostly better, but not as precise as the parallel
transport variants. Overall, all methods provide usable low dimensional embeddings.
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Figure 5.4: DRM results for the Plane data set. The 1 000 data points
were sampled with the Quasi-Random method and then projected
using the formula of Eq. (5.2). The first row shows the result of the
LM-approaches, the second those of the MDS-methods, and the last
row those of the NLM-variants.



90 5 EVALUATION

The second example evaluated in this subsection is the S-Shape data set introduced
in Eq. (5.3). This data set is again intrinsically two dimensional and embedded
into a larger space with D = 5. Now, three original dimensions are non-zero with
a linear dependency between x2 and y3, corresponding to the extrusion direction,
and a nonlinear relation between x1 and y1, y2, which is running along the curve of
the S-shape. This nonlinear relation can be described as three semicircles of radius
3
4 , since it is the shape of the curve. Hence, the ideal result would be a centred
rectangle with one side having length 1 and one side having a length of 9

4π. The
intrinsic coordinates of the data set can be scaled and centred to match this plane.
Afterwards the importance factors of a PCA of this plane can be compared to the
ones of computed by the DRMs. Since the data is intrinsically two dimensional as
in the previous example, the neighbourhood size was also chosen as k = 10 for all
approaches and the results are show in Tab. 5.2.

Ideal PCA LLE LTSA MLLE Isomap PTU ENLM GNLM PTNLM
Imp. factor 1 64.942 32.987 64.60 64.020 64.063 66.045 63.847 32.987 66.100 63.850
Imp. factor 2 18.249 18.251 16.91 18.248 18.241 18.906 18.460 18.251 18.820 18.280
Imp. factor 3 - 16.628 3.857 3.194 1.542 - - 16.628 - -
Imp. factor 4 - - 2.764 0.001 0.787 - - - - -

Table 5.2: Importance factors for the S-Shape data set computed by
the different DRM approaches with k = 10.

This time the PCA deviates strongly from the ideal result, it is even the worst result
together with ENLM which results in the same embedding, since the target dimension
is large enough, the method is performing like a linear method.
All nonlinear approaches perform better, while the graph-based methods Isomap and
GNLM overestimate the importance factors and the tangent-based methods LTSA,
PTU and PTNLM slightly underestimate them. The LMs perform slightly worse
than the nonlinear approaches of the other classes, as they have significant third and
even fourth dimensions, but they are still much better than the one computed by
PCA.
As for the linear example, the importance factors are of different magnitude, so the
low dimensional coordinates should be well defined up to their sign. Likewise, the
low dimensional coordinates can be aligned if needed and then easily compared. This
comparison is shown in Fig. 5.5.
The shortfall of the PCA and ENLM methods to obtain a two dimensional embedding
is clearly visible from the dark colour. Here the ”S” is just rotated, but not unrolled.
For the nonlinear methods, LLE is the worst, but still significantly better than the
linear variants. The LMs seem to perform worse than the pairwise distance-based
classes MDS and NLM. Finally, the best results are obtained with the parallel trans-
port variants, with the PTNLM result being close to optimal.
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Figure 5.5: DRM results for the S-Shape data set. The 1 000 data
points were sampled with the Quasi-Random method and then pro-
jected using the formula of Eq. (5.3). The first row shows the result
of the LM-approaches, the second those of the MDS-methods, and
the last row those of the NLM-variants.
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This method of evaluating embeddings by computing sample distances can be em-
ployed when the ideal result is known. For practical applications, where the desired
outcome is generally unknown, different criteria must be applied, to assess the em-
bedding quality. Several criteria are published in literature, a good overview is given
in [LV10]. Most of these criteria focus on different aspects of the embedding, e.g.,
whether an embedding preserves neighbourhood ranks or not [LV09]. Ideally, the
utilised criterion should match the purpose or aim for which the DR is employed.
In this work, DR is used to understand underlying effects and to measure correlations
with the difference operation. The core idea for the visualisation of the underlying
effects as well as for the nonlinear difference measures is the approximation of high
dimensional data points as an image of the generating function F̃ (x̃) for possibly new
low dimensional coordinates x̃. Thus, the embeddings should be assessed with regard
to their capabilities to obtain such a high dimensional data point for low dimensional
coordinates. A new criterion is introduced, to measure these capabilities.
Given an input data set Y and low dimensional coordinates X̃ computed by a DRM, a
reduction score is computed based on the mean reconstruction residual for all sample
points yi and x̃i, respectively. For the linear PCA, the reconstruction F̃ (x̃i) can be
computed as described in Section 3.2. For the nonlinear methods, the LLI and LAI
approaches are used, as described in Section 3.3.2.2 and Section 3.3.3.2, depending on
the preserving properties of the method. Both of these interpolation approaches use
the neighbourhood N (x̃i), which may be different from N (yi) and, most importantly
in this work, it holds that i /∈ N (x̃i). Hence, the reconstruction error is in general
not zero for the sample points. The mean of the reconstruction errors is computed
and afterwards divided by the mean of the pairwise Euclidean distances in the high
dimensional space. This yields a new score ξDRM, which is independent of the unit
scale in which the data is given:

ξDRM
(
Y, X̃

)
:= (s− 1)

∑s
i=1‖yi − F̃ (x̃i)‖2∑s
i=1

∑i
j=1‖yi − yj‖2

(5.4)

The smaller this score is, the better are the generating properties of the DRM for
the given samples. While this new score cannot evaluate whether the dimensionality
has been captured correctly, it provides an aid for the analyst to decide whether the
embedding should be used for further analysis steps. And since it depends only on the
given sample points and the computed approximations, it can also be consulted for
data sets where the intrinsic structure is unknown. The scores for the two manifolds
and the different DRMs are listed in Tab. 5.3.

Data
DRM PCA LLE LTSA MLLE Isomap PTU ENLM GNLM PTNLM

Plane 3.73e-14 1.19e-4 3.15e-6 7.37e-5 3.33e-3 2.05e-7 5.34e-7 2.18e-3 2.05e-7
S-Shape 4.25e-14 5.75e-3 6.27e-3 5.35e-3 8.66e-3 3.36e-3 1.29e-6 3.76e-3 2.42e-3

Table 5.3: Reduction scores for the different DRMs and the two
artificial examples, computed with k = 10.
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For both data set, all methods yield good results. On the linear Plane data, LLE,
Isomap and GNLM perform slightly worse than the other methods. The nonlinear
S-Shape data set shows a deficit of this score: Though the PCA and the ENLM failed
to determine the two dimensional intrinsic structure, their generating properties are
very good as they utilise a three dimensional embedding. Despite of this deficit, this
score can still be helpful to decide when not to continue with an analysis using a low
dimensional embedding or comparing the different embedding of the same dimension
with each other.

While the optimal method for DR for the first step of the analysis of simulation
results is yet not known, the evaluation in this section has shown two initial insights:
First, MLLE did outperform LLE on all investigated examples. Since both methods
have the same goal of preserving local neighbourhood weights, this work focusses on
the MLLE.
Second, if the target low dimension d is large enough for the pairwise Euclidean
distances to be preserved without loss, PCA and ENLM provide the same result. As
the target dimension is usually overestimated in the analysis of simulation results,
this will often be the case. For this reason, this thesis focusses on the PCA.

5.1.3 Evaluating the Results of Difference Operations

The second step of the Extended Workflow is the difference operation, which investi-
gates the correlation between a source and a target data set. Two nonlinear difference
operations have been introduced, the DLLI in Section 4.2.1 and the DLAI in Section
4.2.2. Even though the DLAI is designed for tangent space-based methods and is
expected to perform better on these approaches, both operations can theoretically
be combined with all nonlinear DRMs in the first step. Thus, all combinations of
difference operations and reduction methods are computed. For each of the combi-
nations, a modification matrix M ∈ Rs×s is obtained and applied to the new data set
Y ∈ RD×s. The resulting Y (Is −M) is then evaluated.
Similar to the results obtained from the different DRMs in the last section, the results
of the two difference operations can also be judged in two aspects: For the artificial
data sets, the ideal results are known, so the low dimensional new coordinates result-
ing from the difference operation can be compared to these ideal results.
In practical applications, where these ideal results are unknown, the difference mea-
sures δspec and δvar as introduced in Eq. (4.2) and Eq. (4.3) can be computed in order
to get an easily understandable quantitative comparison.
In the following three examples with different dependencies between source and target
data set are evaluated: a perfectly linear dependency, a nonlinear dependency, and a
random, nearly uncorrelated relation.
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5.1.3.1 Linear Example

The first correlation to be investigated is the perfectly linear example. Source Y and
target Y for the difference operations in this example are the same data set, namely
the Plane data set of Eq. (5.2). The 1 000 samples were generated with the Quasi-
Random sampling introduced in Section 5.1.1. Since the data set is a linear manifold,
PCA can perfectly capture the underlying structure, and since target and source are
identical, the dependency is also linear and the DPCA yields the ideal result.
In this test, the first effect is subtracted. Since there is a clear one-to-one relation,
subtracting the first mode of the source data set should eliminate the first mode of
the target data set, setting the first coordinate of all points to zero. The second
coordinate should remain unchanged, i.e., the second mode becomes the first mode
with the same importance factor. Both the given data set and the ideal result as
obtained by the DPCA are visualised in Fig. 5.6. For illustration purposes, the PCA
is then applied to the result to compute the remaining importance factors as well.
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Figure 5.6: Difference example Plane. The first picture shows the
PCA result for the Plane data, that is source and target for the
difference operation. The second picture shows the desired outcome
where the data is projected onto the orthogonal complement of the
first principal component.

The first nonlinear difference approach is the DLLI. First all nonlinear DRMs were
applied to the input data set with k = 10, yielding the results displayed in the last
section. Then, the first mode was subtracted using the respective MDLLI calculated
for the same neighbourhood size k = 10 as introduced in Section 4.2.1 with the ad-
ditional normalisation enhancement of Section 4.2.3. The resulting low dimensional
coordinates, displayed in Fig. 5.7, were then oriented with PCA, to obtain a stan-
dardised representation and comparable importance factors. In this case, the linear
approach is always used to get an isolated nonlinear effect from the difference opera-
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tion only and no side effects from an additional nonlinear DR.
While the overall results are good, the graph-based approaches Isomap and GNLM
have local errors as a consequence of the small local distortions that were already
visible in Fig. 5.4. The parallel transport variants yield results that are visually
indistinguishable from the perfect result.
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Figure 5.7: DLLI results for Plane data set. The colour shows the
difference to the DPCA result of Fig. 5.6.b, which is the reference
for the desired outcome.

The second difference method is the DLAI approach. It was tested in the same way
as the last method: The first mode of all DRMs for the data set was determined
and then MDLAI with k = 10 and normalisation enhancement was calculated, as
explained in Section 4.2.2 and Section 4.2.3 respectively. As can be seen from the
visualisation in Fig. 5.8, the results are in general comparable to the ones obtained
from the last difference method. Surprisingly, the results for the MLLE approach
are marginally better than the ones of the LTSA method, even though the DLAI
was specifically designed for tangent-based methods such as LTSA, validating the
evaluation of all possible combinations of DRMs and difference methods. The results
for the graph-based DRMs appear to be slightly worse than the ones obtained in
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combination with DLLI, but a detailed inspection has shown that these are also due
to the local distortions mentioned before.
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Figure 5.8: DLAI results for Plane data set. The colour is again the
difference to the DPCA result of Fig. 5.6.b.

Though small errors were visible for some DRMs, both difference methods performed
well on the linear example. This was to be expected, as the manifold is very well
sampled, and all DR approaches were able to sufficiently capture the underlying
structure. Nonetheless, since the actual nature of the solution manifold is unknown
in practical applications, it is important for the nonlinear methods to also handle
linear dependencies satisfactory.

5.1.3.2 Nonlinear Example

The second example contains a nonlinear dependency between two different high di-
mensional data sets that are intrinsically the same. First, the 1 000 sample points are
Quasi-Randomly sampled in R2 and then projected into the high dimensional space
with two different generating functions.
The source data set is the S-Shape as introduced in Eq. (5.3) and its first mode should
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be subtracted from the target data set. For the target data set, the Heated Swissroll
manifold is used. It is a variant of the very popular Swissroll example, which is an
Archimedean spiral extruded into one direction [TDSL00]. The “Heated” version is
additionally curved in its extrusion direction [LV07].
Several variants of the Swissroll example exist in literature, e.g. in [ZW07], [ZQZ11]
and [BYF+19], and the various publications often differ in two parameters: the ex-
trusion length and the offset to the centre of the spiral. For the investigation in
this section, a constant offset of c = 0.05 was used. The Heated Swissroll with
extrusion length of one and offset c ∈ R is defined as fhroll,c : [0, 1]2 → RD, with
φhroll : [0, 1]→ R:

φhroll(x2) := 3
2(x2 −

1
2)

fhroll,c(x) :=


2(1 + φhroll(x2)2)

√
x1 + c cos(4π

√
x1 + c)

2(1 + φhroll(x2)2)
√
x1 + c sin(4π

√
x1 + c)

2x2 − 1
0D−3

 (5.5)

Before computing the difference operations by subtracting the first mode, the desired
outcome can be calculated by performing a modified sampling and then applying
the generating function of the target: The data is first “medianified” in the low
dimensional data space. This can be viewed as the opposite of centralising, where
the mean is subtracted, here everything is set to the mean value:

X̌ := 1
s
X1s1s

T

Then, the ideal outcome of the difference operation, i.e. removing the variance in the
first e modes, can be computed by:

fhroll,c

(
diag

(
0, ..., 0︸ ︷︷ ︸

e

, 1, ..., 1︸ ︷︷ ︸
d−e

)
X + diag

(
1, ..., 1︸ ︷︷ ︸

e

, 0, ..., 0︸ ︷︷ ︸
d−e

)
X̌
)

Since the first e = 1 most important effect should be removed, this means that the
variation along the spiral should be removed, while variation along the extrusion
curve should be preserved. The input data sets and the ideal outcome are visualised
in Fig. 5.9. Furthermore, the result of the DPCA approach is displayed, showing that
the linear difference operation completely fails to detect the dependency between the
data sets, resulting in a self-intrusion of the spiral, far of the ideal curve.
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Figure 5.9: Difference example for S-Shape (a) and Heated Swissroll
(b). The first picture shows the source and the second the target
for the difference operation. The third picture (c) shows the DPCA
result, while (d) finally shows the ideal outcome of a difference op-
eration that was calculated by medianifying the intrinsic coordinates
prior to projection into the high dimensional space. The points are
coloured to their sample number, showing which points are intrinsi-
cally identic.

The disastrous result of the linear method underlines the need for nonlinear methods.
The first nonlinear difference methods is the DLLI approach. Similar to the last
example, all nonlinear DRMs are initially applied to the first data set with k =
10 resulting in the low dimensional embeddings visualised in Fig. 5.5. Then the
corresponding modifications Y (Is −MDLLI) were computed and afterwards oriented
with a final application of PCA to increase comparability. These oriented results are
visualised in Fig. 5.10.
The LMs show large errors for multiple sample points with LTSA being the worst of
all methods. MDS approaches yield better results and NLM methods generate curves
comparable to the ideal result. For all classes, the errors tend to increase towards the
ends of the curve, which can be explained by the fact, that the curvature increases
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along the spiral of the Heated Swissroll. This means that the variation is stronger
towards the ends while being relatively smaller towards the centre of the curve.
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Figure 5.10: DLLI results for the S-Shape and Heated Swissroll data
sets. The colour shows the difference to the ideal result shown in Fig.
5.9.c

Similarly, the DLAI was applied in combination with the different low dimensional
embeddings and the same target data set. The results, which were subsequently
oriented by a PCA application, are displayed in Fig. 5.11. Here all methods provide
comparable and very good results, with the MDS variants being slightly worse than
the others. Again, an error concentration towards the ends of the low resulting
curve can be observed, caused by the aforementioned increasing curvature along the
Swissroll’s spiral.
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Figure 5.11: DLAI results for the S-Shape and Heated Swissroll data
sets. Colour is again the difference to the ideal result shown in Fig.
5.9.c

After the very simple linear example in Section 5.1.3.1, the newly developed difference
methods also performed well on the more challenging nonlinear example. Here, the
DLLI provided results of very different quality, while the DLAI obtained similar and
good results for all investigated nonlinear DRMs.

5.1.3.3 Random Example

The last example is the most challenging application, where the difference methods
are applied to two data sets of 1 000 samples that are intrinsically as different as pos-
sible. Here the source data set is again the Quasi-Randomly sampled two dimensional
plane data set of Eq. (5.2). The target is a set of five dimensional Orientable Noise
data. Orientable Noise is a new data set where all coordinates are generated with a
normal distribution and expectation of zero N(0, σ2), but with an increasing standard
deviation σ for each dimension. This way, the orientation of the PCA result for this
data set is unique up to the sign of the axis. The generating function can be stated
as fonoise : [0, 1]0 → RD, where [0, 1]0 indicates, that it is random and not depending
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on any input value other than the number of samples to be generated.

fonoise(x) :=



N(0, 1)
...

N(0, i)
...

N(0, D)


(5.6)

The data set in this investigation was generated with D = 5 and there is no significant
correlation with the expected two dimensional plane data. Thus, the importance
factors should not be noticeably affected when subtracting the first mode of the source
from the target. However, local coordinate changes may occur, and since the data is
randomly generated, some minor amount of correlation cannot be prevented. Since
the Orientable Noise can be interpreted as a linear five dimensional data set with
random sampling and the identity as the generating function, the DPCA is assumed
to provide the correct result, since two close to uncorrelated linear manifolds are
involved. A visualisation of the data sets as well as the DPCA result is given in Fig.
5.12.
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Figure 5.12: Difference example for Plane and Orientable Noise. The
first picture shows the source and the second the target for the dif-
ference operation. The third picture shows the outcome of the liner
DPCA operation, which is assumed to be the correct result.

The investigation in Section 5.1.2 has shown that the nonlinear DRMs can capture the
intrinsic structure of the Plane with a neighbourhood size of k = 10 very well. When
subtracting the first mode of the Plane from the new randomly generated target with
the DLLI and the same number of neighbours k = 10, the results in Fig. 5.13 are
obtained.
Though the source data set is the same as in the linear dependency example of Section
5.1.3.1, the results for this example are much worse. In combination with LTSA,
Isomap and GNLM, the DLLI significantly increases the variance in the target data
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set, multiplying the largest importance factor by up to a factor of four, e.g., for
GNLM, where the importance factor should actually have stayed unchanged. It is
noteworthy that the graph-based results have star-shaped pattern where some groups
of points are pushed outside from the centre of the manifold. This is most likely
caused by extrapolations with large weights for nearest neighbours in the plane. The
parallel transport variants perform better, and MLLE is the best performing DRM
in combination with DLLI, while still increasing the first two importance factors.
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Figure 5.13: DLLI results for the Plane and Orientable Noise data
sets. The colour shows the difference to the DPCA result of Fig.
5.1.3.3.c, which is the desired outcome as the reference. The reference
importance factors are 73.71, 62.69 and 54.56.

Next, the DLAI approach in combination with the normalisation enhancement is
evaluated on this example with challenging random data. All parameters were chosen
as in the previous examples to guarantee good comparability. The results for the
different DRMs and a neighbourhood size of k = 10 is displayed in Fig. 5.14. In
contrast to the last nonlinear method, this nonlinear approach is yielding comparable
results in combination with all different DR approaches. Visually, LTSA is yielding
the best result, while GNLM has the least increase in importance factors. Though the
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importance factors still marginally increase for all DRMs, the overall performance is
much better and closer to the linear result. A slight increase of importance factors in
the case of uncorrelated data set might not be avoidable as the generalised difference
operations are no orthogonal projections, see Section 4.2.3.
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Figure 5.14: DLAI results for the Plane and Orientable Noise data
sets. The colour is again the difference to Fig. 5.1.3.3.c. The impor-
tance factors of the reference are 73.71, 62.69 and 54.56.

The investigations in this section have led to further insights: In the best case of a
clean linear relation between target and source, both nonlinear difference operations
yield similar results close to the ideal result. Furthermore, the nonlinear methods
are capable of handling nonlinear correlations. In general, the results of the DLLI
method are varying stronger for the different DRMs than those of the DLAI approach.
Most importantly, the DLLI strongly increases the importance factors for random or
unstructured data sets.
Based on these insights, only the DLAI method will be investigated for further ex-
amples, as it showed superior capabilities. The fact that the best DRM was always
different for each example underlines the necessity to apply different approaches and
not to rely on a single method.
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5.1.4 Methodology Impact

The different DRM approaches vary in the methodology of the applied reduction, i.e.
how they aim to capture the underlying structure of the data. This methodology
determines which properties are preserved and affects the outcome of the reduction
process. As this outcome is used to define the difference operation, this second step
is also influenced by the underlying model of the reduction method.

In [BYF+19] an example of a nonlinear Petals data set is used to highlight the different
properties of the reduction methods. A similar data set can be created with the
generating function fpetals : [0, 1]2 → RD, with φpetal,j : [0, 1]2 → R2, j ∈ {1, 2, 3, 4}:

φpetal,1

(
x1
x2

)
:=

 sin
(

2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 1

2

))
sin

(
2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 1

2

)) 
φpetal,2

(
x1
x2

)
:=

 − sin
(

2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 3

2

))
sin

(
2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 3

2

)) 
φpetal,3

(
x1
x2

)
:=

 sin
(

2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 5

2

))
− sin

(
2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 5

2

)) 
φpetal,4

(
x1
x2

)
:=

 sin
(

2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 7

2

))
sin

(
2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 7

2

)) 

fpetals

(
x1
x2

)
:=





φpetal,1

(
x1
x2

)
, 0 ≤ x2 <

1
4

φpetal,2

(
x1
x2

)
, 1

4 ≤ x2 <
1
2

φpetal,3

(
x1
x2

)
, 1

2 ≤ x2 <
3
4

φpetal,4

(
x1
x2

)
, 3

4 ≤ x2 ≤ 1

− cos
(

2
3πx1

)
0D−3



(5.7)

The resulting data set for 1 225 Quasi-Randomly sampled points is displayed in Fig.
5.15.a. A suitable target data set, to show the effect on the following difference
operation, is the Disk data set created with the generating function fdisk : [0, 1]2 →
RD:

fdisk

(
x1
x2

)
:=


√
x1 cos (2πx2)√
x1 sin (2πx2)

0D−2

 (5.8)

Both of these data sets, the Petals as well as the Disk, are intrinsically two dimen-
sional. This means that subtracting the first e = 2 modes of the Petal data set from
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the Disk data set displayed in Fig. 5.15.b should ideally eliminate all variance and
collapse all samples onto one point, if both were generated from the same intrinsic
coordinates. The DPCA result in Fig. 5.15.c shows that the linear approach fails to
obtain this result.
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Figure 5.15: Difference example for the Petals and the Disk data
sets. The first picture shows the source and the second the target for
the difference operation. The third picture shows the outcome of the
liner DPCA operation for the first e = 2 modes.

The Petals data set is challenging for DR because of three properties. First, the high
dimensional values fpetals depend nonlinearly on both intrinsic coordinates x1 and
x2. These types of manifolds are defined as “non-developable” in [LV07] and can be
challenging for some DRM approaches.
Second, the manifold is containing gaps between one petal and its neighbours. These
gaps are problematic for graph-based approaches such as Isomap, because paths in
the manifold are elongated by the detours around these gaps.
Lastly, the manifold contains bottlenecks in the centre and at the tips of the Petals,
with a high density of sample points. This high density may pose a challenge for local
methods such as LLE, because the local properties like interpolation weights can fail
to capture the global structure, if all nearest neighbours are concentrated in a small
area.
When applying the different DRMs, the resulting embedding is also different depend-
ing on the underlying methodology. The linear PCA fails to capture the intrinsic two
dimensional structure of the data and just reorients the data set. The results for the
nonlinear DRMs are displayed in Fig. 5.16.
Methods based on parallel transport distances, such as PTU and PTNLM, perform
best, as they result in two dimensional embeddings with undistorted individual seg-
ments. These two approaches yield very similar embeddings up to a global rotation,
which can occur when all dimensions are equally important.
The LM approaches LTSA and MLLE unroll the Petals data, but also truncate the
individual segments, yielding shorter and slimmer leaves. Additionally, the MLLE
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method also provides a significant but undesired third dimension.
An even bigger third dimension is present for the graph-based Isomap and GNLM
approaches, which perform worst of all nonlinear methods. The detours in the man-
ifold paths induced by the gaps between the individual segments cause an undesired
distortion of the embedding that wrongly orientates and thins the segments.
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Figure 5.16: DR results for the Petals data set for the different non-
linear approaches. The points are coloured according to their sample
number.

The difference in the computed low dimensional embeddings directly affects the out-
come of any following difference operation. For the nonlinear DRMs in combination
with the DLAI approach as the difference operation, the results are shown in Fig.
5.17 and the corresponding difference measures are listed in Tab. 5.4.
Ideally, all points would be superposed in one single location and the δ-measures
should be close to 100%. The better a DRM captures the underlying structure of the
Petals data set, the more variance is removed from the Disk data set, i.e. the smaller
the remaining importance factors are.
Although all nonlinear approaches yield better results than the linear DPCA, the
graph-based Isomap and GNLM approaches yield worse results than the other meth-
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ods. The LMs perform almost as good as the parallel transport variants with MLLE
being slightly worse than LTSA. This matches the findings of the reduction step,
where the methods had a similar order.
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Figure 5.17: DLAI results for the Petals and Disk data sets for the
different nonlinear approaches.

Measure PCA LTSA MLLE Isomap PTU GNLM PTNLM
δspec 50.1% 93.5% 92.9% 83.8% 93.9% 87.6% 93.9%
δvar 75.4% 99.7% 99.7% 98.1% 99.7% 99.0% 99.7%

Table 5.4: Difference result of the different approaches for the Petals
as the source and the Disk as the target.

5.1.5 Additional Complexity

The investigations in the last section have shown that the capabilities of the DRM
to capture the intrinsic structure of the source data set is essential and has a crucial
influence on the performance of the following difference operation. Before approaching
real simulation data, the reduction step should be evaluated on more challenging
artificial examples with additional complexity. Amongst others, two properties can



108 5 EVALUATION

be observed frequently in real application data that can affect the performance of
the DRMs: The first is the existence of noise in the samples and the other is that
the assumptions made in Section 3.1.4 are not entirely met. Both cases are briefly
evaluated in this section.
It is important to note that both topics are only briefly investigated in a heuristic
study and an in-depth evaluation would exceed the limited scope of this thesis. Hence,
the cases are addressed to the extent that is relevant for the data used in this work.

5.1.5.1 Noisy Data Sets

Data sets in practical applications often contain some degree of noise. The reasons
for the presence of noise in simulation data results are diverse, but, amongst others,
include physical and numerical uncertainties [Mar99] as well as simulation process-
related reasons [TM03].
Since the amount of noise is a priori unknown, a data analysis method should be able
to produce reliable results up to a point where the noise is in the same magnitude
as the information incorporated in the data. Hence, this section investigates the
behaviour of the DRMs under noise.
For this investigation, the linear Plane data set of Eq. (5.2) was chosen as this is the
only data set where the linear PCA can be reasonably included in the comparison
to put the results of the nonlinear methods into a relation. Again, 1 000 sample
points xi ∈ R2 were sampled with the Quasi-Random approach of Section 5.1.1 and
projected into the high dimensional data space using yi = fplane(xi) ∈ RD with
D = 5. Furthermore, white Gaussian noise [LV07] with a varying standard deviation
was added to the projected data. The standard deviation was chosen relative to the
maximum value of the high dimensional coordinates. For a given noise level ν ∈ R,
the data was generated by:

xmax := max
ij
|xij|

ỹij := N(0, νxmax) + yij

It is important to note that while only the first two coordinates yi1 and yi2 contain
actual information, all five coordinates yij per sample are affected by the noise.
Since the nonlinear methods performed reasonably well with a neighbourhood size of
k = 10 for the unperturbed Plane in Section 5.1.2, the same number of neighbours
was also used for the noisy data sets. The noise level ν was varied three times and
the DRMs applied to the data set each time, with a target dimension of d = D = 5.
To compare the different performances, the reduction scores for ξDRM of Eq. (5.4)
were then computed for each method and each noise level. The resulting scores are
listed in Tab. 5.5.
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Noise
DRM PCA LTSA MLLE Isomap PTU GNLM PTNLM

ν = 1e-2 2.37e-15 1.89e-2 1.89e-2 2.35e-2 2.28e-2 2.10e-2 2.26e-2
ν = 3e-2 1.05e-15 5.71e-2 5.65e-2 7.32e-2 6.66e-2 5.73e-2 5.24e-2
ν = 5e-2 6.52e-16 9.53e-2 8.64e-2 1.13e-1 1.18e-1 6.74e-2 8.83e-2

Table 5.5: DRM scores for the different approaches and the Plane
data set with increasing white Gaussian noise. A neighbourhood size
of k = 10 was used for all nonlinear DRMs and noise levels ν.

For the nonlinear DRMs, the growth of the score values matches the increase in the
noise level very well. It is important to note, that the noise levels ν are multiplied
with the maximum value, which for this data set is 1.497. The ξDRM scores are rela-
tive with regard to the average distance. That average distance is 1.318 and smaller
than the maximum value.
Since the target dimension d = 5 is large enough to embed the data without any loss,
the linear PCA only re-orients the data, yielding close to perfect scores for all noise
levels. The nonlinear methods, on the other hand, perform an actual DR, i.e. the
computed low dimension is smaller than five, resulting in errors depending on the
information removed from the data set.
At the lowest noise level, the LM class with LTSA and MLLE perform best on this
example. On the other hand, the NLM approaches yield the best scores at the highest
noise level. The nonlinear MDS variants are resulting in the worst scores for all noise
levels.
For the most part, these findings also match the visual representation in Fig. 5.18.
Here, each column shows the results for one noise level. In each row the DRM with
the best performance in the respective class is displayed, with the linear PCA in the
first row, LMs in the second, nonlinear MDS approaches in the third and NLM meth-
ods in the last row.
The reference for the embeddings is the Plane without any noise and the PCA result
shows the evenly distributed noise over the complete manifold.
On the contrary, the nonlinear methods provide results where the error is concen-
trating in certain areas. In general, LMs provide rather smooth manifolds as all local
properties are preserved in a global least squares solution. The MDS methods can
provide results where single points are poking out of the manifold, if the local noise
was large in the input. As the NLM methods can be seen as a compromise between
the two other classes, the results are also smoother than the MDS variants, but not
as smooth as those of the LMs.
Overall, the visual impression matches the results of the ξDRM reduction scores, where
methods with a low score also yield small errors in the embedding. The only excep-
tion is the PTU result for the lowest noise level, which produced a very good distance
in the embedding but relatively bad reduction score. This may be due to the fact
that the reduction score is calculated with regards to the noisy Plane data and the
colouring of the embedding with respect to the noiseless data set.
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Figure 5.18: DRM results for the Plane with increasing noise levels.
The colour indicates the distance to the noiseless data set.
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In conclusion, the linear approach seems to handle noisy data sets better than the
nonlinear methods, at least for linear manifolds. The nonlinear DRMs can handle the
small noise levels investigated in this section reasonably well. These small levels are
motivated by the degree of noise in the application data used in this work, see Section
5.2.2 and Section 5.2.3. A study of stronger noise levels beyond the scale typically
found in practical applications is left for further research.

5.1.5.2 Relaxing the Assumptions

In Section 3.1.4 several assumptions were made for the given data set. Some of these
are easily satisfied in practical applications. For example, if the data is constant,
i.e. all samples are the same, there is no need to analyse it, and if the data has no
expectancy of zero, it can be centralised before applying the analysis methods. But
other assumptions are not as easily satisfiable.
One more complex assumption is that the data lies on a single connected manifold
of a fixed dimension. This assumption cannot easily be satisfied, if the data violates
it and it is thus relaxed in this section to investigate the implications. Similar to
the investigation in the last section, the topic can only be visited heuristically in the
scope of this thesis. Hence, the violation of the assumption is only evaluated to a
scale, which is relevant for the example data featured in this work. Data sets can
violate the assumption in two different ways: connectivity and constant dimension.

First, the manifold can be disconnected, meaning that it consists of more than one
connected component. While the recommendation is to investigate each component
separately, the analyst may want to conduct a global analysis, resulting in an artificial
connection of the multiple components. Such a case can be demonstrated with an
artificial data set example consisting of two orthogonal planes, which are placed with
a gap in between, as displayed in Fig. 5.19.
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Figure 5.19: Visualisation of the example data set of the two or-
thogonal planes. The points are coloured according to their sample
number.
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This intrinsically two dimensional data set can be created with the following gener-
ating function ftwoplanes : [0, 1]2 → RD, with φleft, φright : [0, 1]2 → R3:

φleft

(
x1
x2

)
:=


3x1 − 1.75

0
2x2 − 1



φright

(
x1
x2

)
:=


3x1 − 1.25

2x2 − 1
0



ftwoplanes

(
x1
x2

)
:=




φright

(
x1
x2

)
, x1 ≥ 1

2

φleft

(
x1
x2

)
, x1 <

1
2

0D−3

 (5.9)

To evaluate the performance of the DRMs, an example data set with 1 225 sample
points was generated with the deterministic grid-base sampling method introduced
in Section 5.1.1 and then projected using the formula of Eq. (5.9). The results of the
nonlinear DRMs for this data set are shown in Fig. 5.20.
The challenge of this data set is that the two separate, disconnected manifolds must
remain undistorted and must be correctly orientated to each other. Since the data set
is linear, the linear PCA yields the correct result, which is identical to the input data
set. All nonlinear approaches are affected by the neighbourhood graph constructed
with an intentionally small neighbourhood size of k = 4, resulting in an enforced
connection of the manifolds by a single edge.
The approaches of the LM class cope with the fact that two neighbourhoods contain
one disproportionately large distance between the nearest neighbours, which locally
distorts the manifolds. Apart from these local distortions, the results are acceptable.
In the results of the graph distance-based approaches Isomap and GNLM, global de-
formations can be observed, which result from the detours induced by the gaps in the
neighbourhood graph. These detours will always align the two planes orthogonal to
each other, even if they would be oriented different.
On the contrary, the parallel transport variants always align the two planes in the
same orientation, regardless how they were originally placed. Fortunately, the cor-
rection of the geodesic paths prevents any distortion of the individual planes.
When interpreting results with more than one connected component, it is important
to consider that the orientation of patches to each other depends more on the used
nonlinear DRM approach than on the actual position to each other. This behaviour
can be corrected by increasing the number of neighbours so that there are enough
connections to determine the orientation of the components relative to each other.
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Figure 5.20: DRM results for the data set of Fig. 5.19 with two
orthogonal planes. The neighbourhood graph is visualised as grey
lines and the points are coloured according to the distance to the
PCA result, which is the ideal outcome.

The second way in which the assumption that the data is lying on a single connected
manifold of a fixed dimension can be violated is the case of mixed dimension data
sets. In practical applications, the dimension can change throughout the data set,
with one portion being of a different intrinsic dimension than other areas. Ideally, the
analysis would be applied to each portion separately, but dividing a data set into neat
clusters is not always be possible. To investigate the behaviour in this case, a new
data set of the so-called Shovel example is introduced. This data set is consisting of
a blade, which is a nonlinear two dimensional manifold, that is connected to a handle
represented by a one dimensional linear manifold. The generating function can be
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stated as fshovel : [0, 1]2 → RD, with φblade, φhandle : [0, 1]2 → R3:

φblade

(
x1
x2

)
:=


−1

5 −
1
4 cos(πx1)

1
4 −

1
4 sin(πx1))

1
2x2 − 1

4



φhandle

(
x1
x2

)
:=


x1 + 1

4x2 − 1
2

0
0



fshovel

(
x1
x2

)
:=




φblade

(
x1
x2

)
, x1 ≥ 1

2

φhandle

(
x1
x2

)
, x1 <

1
2

0D−3

 (5.10)

To evaluate the performance of the different DRMs on this example, a data set with
1 000 points was sampled with the Quasi-Random method introduced in Section 5.1.1
and then projected using the formula of Eq. (5.10). This input data set is visualised
in Fig. 5.21.a and the ideal DR result in Fig. 5.21.b. Ideally, the Shovel is unrolled
into the low dimensional plane with the handle staying straight and a rectangular
connection with the blade.
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Figure 5.21: Visualisation of the Shovel data set. The points are
coloured according to their sample number.

When applying the linear PCA, the result is just a rotation of the input data set,
capturing the two dimensional intrinsic structure. All nonlinear approaches were
applied with a neighbourhood size of k = 10, as this has proven to be a good choice
for intrinsically two dimensional manifolds such as the blade of the Shovel. The
resulting embeddings for the different nonlinear DRM approaches are closer to the
desired outcome than the PCA result and displayed in Fig. 5.22.
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Figure 5.22: DRM results for the Shovel data set of Fig. 5.21.a. The
colour shows the distance to the ideal result shown in Fig. 5.21.b.

The LMs LTSA and MLLE provide usable low dimensional embeddings for this exam-
ple. Only the handle of the Shovel is slightly curved, because of the sample density,
which prevents the local neighbourhoods from reflecting the global orientation.
Similar to the disconnected example, the graph distance-based methods Isomap and
GNLM provide the worst results with the largest errors, as they yield three dimen-
sional instead of two dimensional objects, with local distortions at the corners of the
Shovel blade.
Encouragingly, the parallel transport variants provide close to ideal results, with only
small errors at the blade corners near the handle. This is due to a graph connection
between the nodes in the blade near the handle with the nodes in the handle, which
results in a slight rotation of the local tangent frame.

Both ways to violate the assumption have been heuristically investigated, and for
small gaps in the manifold as well as a small difference in the intrinsic dimensions,
the modified nonlinear DRMs can still be applied in this work. These small viola-
tions can frequently be observed in application data, but an in-depth investigation of
stronger violations beyond these practical requirements is left for future research.
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5.2 Performance on Crash Simulation Data
With the basic functionality of the new methods demonstrated on artificial data sets
in the last sections, this section features the application of the Extended Workflow
on simulation result data. In contrast to the artificial manifolds, where the ideal
outcome is known and samples can be distributed as desired, these properties are in
general not given for the analysis of real simulation examples. The three examples in
this section have an increasing complexity, introducing more difficulty with each new
data set. All data sets shown here were simulated using LS-DYNA explicit [LC20a]
version “smp d R8.0.0” in revision 95309, though any simulation code could be used.

5.2.1 Cylinders Example

The first data set consisting of simulation results is the Cylinders example, which
was specifically constructed for this work. This simple example is used to explain
the different steps of the analysis and to compare the results for different analysis
targets. Since this data set was specifically constructed for this thesis, it offers a
unique opportunity as the dependencies between the parts involved are simple and
known before applying the analysis. The known intrinsic structure of this data is
used to highlight the limitations of the linear approach and the capabilities of the
nonlinear methods. Each step of the analysis is investigated very detailed for this
first example and shorter for the following data sets, since the steps are similar and
further explanations would be redundant. All simulations involved were created using
a small set of scripts, which can be found in Section B.2 of the appendix and can thus
be entirely recreated by the interested reader.

5.2.1.1 Structure of the Data Set

The Cylinders data set consists of 91 variants of a simulation that involves three
identical cylinders and two identical floor segments. Each cylinder has a height of 80
mm and a radius of 20 mm. It is modelled by solid elements, while the top and the
bottom faces have an additional layer of shell elements that share the nodes with the
solid elements. The material is assumed to be an idealised aluminium modelled by a
MAT 24 card and assigned to all elements. The exact material specification can be
found in Section B.2. Each floor is modelled by a single shell element which spans
150 mm in x and y direction and is inclined by 7.5% in z direction with increasing
values of x. The two floors are placed 75 mm apart from each other and the first
and the second cylinders are centred above each floor with a distance of 7.5 mm in z-
direction, measured in the centre of the cylinder. A third cylinder is placed above the
left cylinder with an offset of 10 mm in z-direction and −30 mm in y-direction. This
initial geometry is displayed in Fig. 5.23. The starting conditions for the simulation
are that the floors are fixed, and the cylinders are falling with a constant speed. Here,
all floor nodes are fully constrained so that no degree of freedom is left, and the nodes
in the cylinders are unconstrained with an initial velocity of −10 ms in z-direction.
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A result state is written to the output file every 1 ms in order to get a fine time
resolution of the process. This basic set-up with two interacting cylinders on the left
and one independent cylinder on the right is the same amongst all simulations.

upper cylinder right cylinder

left cylinder

upper top

upper bottom

(a) Angular view

(b) Top view

(c) Front view

Figure 5.23: Initial geometry of the Cylinders example.

The first simulation is this unmodified set-up, and the other 90 variations were calcu-
lated as follows: The left floor was rotated in the xy-plane around its centre by two
degrees more in each variant until it was rotated by a full 180◦ in the last simulation.
The right floor was also rotated in the xy-plane around its centre, but by a random
angle between 0◦ and 180◦ in each simulation run. These floors act as triggers to
induce a controlled variation in the behaviour of the cylinders. The resulting be-
haviour is comparable in all variants, i.e. first all cylinders are in a free fall until the
lower cylinders hit the floors. Depending on the rotation of the floors, the two lower
cylinders start to tilt in different directions in each variant. A few milliseconds later,
the upper cylinder hits the lower left cylinder and stabilises it after its tilting was
allowed to unfold. But, since it was tilted in a different direction for each variant, the
upper cylinder also starts to tilt in a different way in each simulation, as their faces
are hitting at a different point and angle.
The behaviour of the right cylinder is completely independent of the other cylinders
since there is no contact and the angles are created randomly. This cylinder hits the
floor and starts to tilt as described earlier, but since there is no further impact, it does
never stabilise. Snapshots of the described behaviour of the cylinders are displayed
in Fig. 5.24.
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(b) Contact with floors at 6 ms (c) Upper cylinder hits left at 13 ms

(d) Tilting of upper cylinder at 18 ms (e) Last evaluated state at 30 ms

Figure 5.24: Different states of the cylinders in the first simulation
result. The colour represents the maximum nodal distance of the
same node at this state in all different simulation results. This mea-
surement was not done for the floors as they were rotated and are
expected to be different in the variants.

For a showcase analysis, the correlation of the variance in the movement of the upper
cylinder with the left and right lower cylinders is analysed. In the upper cylinder, the
nodal displacements are chosen as the target of the analysis. Multiple quantities of
the lower cylinders are investigated as possible sources for the variance of this target.
Specifically, the correlation to three candidates is investigated: These are firstly the
nodal displacements of the lower left cylinder, secondly the nodal displacements of
the lower right cylinder and finally the internal energy of the bottom face of the lower
left cylinder.

5.2.1.2 Selecting the Analysis States

Selecting the right states for target and source is an important part of the analysis.
As explained in Section 4.1.2, the possible choices for these states can be determined
using the importance factors calculated by a DRM. These importance factors can be
calculated for the desired entity on the parts of interest for all states and then plotted
as a curve to inspect the development over time. Fig. 5.25 visualises the development
of the first linear importance factor over time for the nodal displacements of different
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parts in the example. Though the linear method can sometimes fail to determine the
correct dimension of the scatter, it can still be used to determine the state, in which
the variance starts to occur and how it develops. There are three curves present for
each of the cylinders, since the cylinder itself is modelled by solid elements and the
top and bottom face, modelled by shells, are separate PIDs, which are used as parts
in this analysis.
The target part in this example was fixed as the solid elements of the upper cylinder.
For the analysis, the target state is chosen as 18 since the scatter had time to develop
there after it first occurred at around state 15. But this state is before the second
increase at around state 21.
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Figure 5.25: Importance of the first PCA mode over time for the
displacements of different parts in the Cylinders example.

Two possible candidates of nodal displacement as sources of this scatter are investi-
gated. First, the left cylinder, as it interacts with the upper cylinder and - in this
simple set-up - is the known sole reason for the difference on the target. The second
investigated source is the right cylinder’s displacement as false positive test. Because
it was randomly varied and there is no interaction with the upper cylinder, there must
be no significant correlation between this second source and the target. The scatter
for each of these PIDs starts at about state 8 and is developing afterwards. The left
starts to stabilise at around state 16, so the state of the source should be set before
the stabilising, therefore, number 14 was chosen for both lower cylinders.
As the variance in the displacement of upper cylinder can also be correlated with other
post values, e.g. the internal energy, this correlation should also be investigated. The
internal energy can be evaluated in this example in the top and bottom faces of the
cylinders, modelled by shell elements, and the development of their linear importance
factors is plotted in Fig. 5.26. The impacts of the cylinders are clearly visible in this
plot, as the variance for the energy of the bottom faces increases drastically, when
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the left and right cylinders hit the ground at around state 7. The impact between
the upper cylinders bottom face and the left cylinders top face is emphasised by the
increase in the importance factors at around state 15. As the bottom face of the left
cylinder is chosen as the third possible source, the corresponding contact state 7 is
chosen as the analysis state.
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Figure 5.26: Importance of the first PCA mode over time for the
internal energy of the cylinder faces.

With the analysis states determined, the CA can be performed for the following parts
and quantities listed in Tab. 5.6.

Type Part Quantity State Time
Target Upper cylinder Nodal displacements 18 17 ms

Source 1 Lower left cylinder Nodal displacements 14 13 ms
Source 2 Lower right cylinder Nodal displacements 14 13 ms
Source 3 Bottom left face Shell internal energy 14 13 ms

Table 5.6: List of target and sources for the Cylinders example in the
Extended Workflow.

5.2.1.3 Application of the Extended Workflow

The Extended Workflow comprises two steps, the Dimensionality Reduction and the
difference operation, which are investigated separately in this section. First, the per-
formance of the DR step is investigated. The DR results of the PCA approach for
the nodal displacements of the target and the two sources at the specified states are
shown in Fig. 5.27. Starting with the sources, the linear PCA approach estimates
two significant modes for both lower cylinders and fails to capture the one dimen-
sional intrinsic structure. The two linear modes describe, how much a cylinder tilts
in the x or y direction, although the behaviour could just as well be parametrised
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one dimensionally by the angle in which the cylinder is tilts. The resulting virtual
simulations for the first two linear modes showing the different tilting behaviour are
visualised in Fig. 5.28.
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Figure 5.27: Low dimensional embeddings of the three investigated
sources in figures a, b, c and the target in figure d. The points are
coloured according to their sample number and show the structured
rotation in the left cylinders as well as the random rotation in the
right cylinder.

The intrinsic one dimensional structure is obvious from the arc-shaped manifolds
shown in Fig. 5.27. While the shape of the manifolds looks similar for the two lower
cylinders, the different colour distribution shows the incremental and the random
rotation of the cylinders.
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(a) Projection F
(
x−1
)

(b) Projection F
(
x+

1
)

(c) Projection F
(
x−2
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(d) Projection F
(
x+
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Figure 5.28: Top view of the lower left cylinder in the virtual simu-
lation results. The first mode in the upper row shows the tilting in
negative or positive x direction with a constant tilting in y direction.
The second mode in the bottom row is purely associated with tilting
in negative the y direction.

With the goal to better capture the underlying properties, the nonlinear DRMs were
applied to the source candidates. The neighbourhood size chosen was k = 6, as this
proved to be a good choice for intrinsically one dimensional data sets. Smaller values
sometimes yield disconnected graphs, and larger values include already distant points
in local neighbour hoods. This size was chosen identically for all methods to increase
the comparability of the results. The results for the displacements of the left cylinder
are exemplarily visualised in Fig. 5.29.
All nonlinear approaches unravel the one dimensional intrinsic structure with minor
differences in the actual coordinates. The intrinsic dimension is also reflected in the
computed importance factors and their relative difference in Tab. 5.7: Though more
than one and up to 90 importance factors were calculated, only one is of significant
size for the nonlinear methods, while there are two noticeably large factors for the
linear PCA. As these factors are sorted in descending order, only the first five are
listed in the table to emphasise that only one or two are important and all further
modes are negligible.
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PCA LTSA MLLE Isomap PTU GNLM PTNLM
Imp. factor 1 27.023 35.027 34.374 34.902 34.77 34.902 34.760
Imp. factor 2 11.865 0.717 0.001 0.103 0.132 0.151 0.544
Imp. factor 3 0.319 0.001 0.001 0.075 0.042 0.132 0.130
Imp. factor 4 0.286 0.001 0.001 0.060 0.019 0.107 0.093
Imp. factor 5 0.105 0.001 0.001 0.043 0.018 0.079 0.051

Table 5.7: Importance factors for the first five modes of the lower left
cylinders displacements at state 14 computed by different DRMs.

The results for the other two sources are similar and are hence not displayed, as only
the order of the samples is different for the displacement of the right cylinder and the
magnitude of the importance factors for the energy of the bottom face is smaller.
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Figure 5.29: Low dimensional embeddings of the lower left cylinder
at state 14 computed by different nonlinear DRMs.

This concludes the highlighting of the differences in the first step of the workflow.

The varied capturing of the intrinsic dimension in the low dimensional embedding of
the first step has a strong impact on the second step of difference operation, since
the operation is defined by these low dimensional coordinates and their importance
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factors. In the following, the three different sources and their effect on the target are
discussed individually. Two tests are performed for each of the sources: Initially, the
single first mode and then the first two modes are subtracted from the target. Since
the intrinsic dimension is one, subtracting the first, most important mode should
already reveal the correlation between source and target, but since the PCA has two
modes with substantial importance factors, both are subtracted and a comparison is
made. The subtraction is performed with the orthogonal projection DPCA approach
for the linear PCA method and with the new DLAI approach for the nonlinear DRMs.
After applying the difference operation, the difference measures δspec and δvar are
computed as introduced in Section 4.1.
The first investigated source is the displacement of the lower left cylinder, which
is interacting with the target upper cylinder, and its different behaviour is the sole
reason for scatter of the target. The results of the difference operation for this source
are displayed in Tab. 5.8. Subtracting only the first linear mode computed by the
PCA method using the DPCA approach does not yield a significant reduction in terms
of δspec or δvar. Using the first two linear modes in the difference operation yields large
values for both deltas, but not as large as expected: Since the PCA determined only
two significant importance factors and this source is the only reason for the targets
scatter, subtracting both underlying modes should eliminate all the variance in the
target, ideally yielding a δvar of close to 100%.
The nonlinear DRMs perform much better in this example: Subtracting only the
single first mode already yields much higher deltas, which are closer to the ideal
100% and better than subtracting two modes with the linear method. Furthermore,
increasing to two modes does not change the outcome, since they only determined
one important mode. Five of the six methods yield identical delta results up to the
first decimal, except for LTSA, which is marginally worse.

Modes Measure PCA LTSA MLLE Isomap PTU GNLM PTNLM
e = 1 δspec 0.0004% 94.1% 94.4% 94.4% 94.4% 94.4% 94.4%
e = 2 δspec 83.4% 94.1% 94.4% 94.4% 94.4% 94.4% 94.4%
e = 1 δvar 11.5% 99.5% 99.6% 99.6% 99.6% 99.6% 99.6%
e = 2 δvar 95.3% 99.5% 99.6% 99.6% 99.6% 99.6% 99.6%

Table 5.8: Difference result with the left cylinder as the source and
the upper cylinder as the target part.

The second investigated source is the displacement of the right cylinder, which was
randomly rotated and has no interaction with the target cylinder. This source should
not yield significant correlation and hence only small values for the delta measures.
The resulting difference measures are listed in Tab. 5.9. Here the linear DPCA
performs very well, even when both significant modes of the source are subtracted,
although the delta values increase marginally, but not to any noticeable size.
The nonlinear DRMs also yield small, although slightly higher delta values. But
in contrast to the linear DRM, the values do not increase when two instead of one
mode are subtracted. Similar to the Orientable Noise data set in Section 5.1.3.3, the
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rotation of the cylinders was determined randomly. Though no high correlation with
the deterministic data set is expected, small local correlations can occur, which is
emphasised by the fact that the linear approach has small but non-zero delta values
that increase with rising number of modes. Again, all nonlinear methods perform
very similarly, with the exception of the LTSA approach, which is slightly worse.

Modes Measure PCA LTSA MLLE Isomap PTU GNLM PTNLM
e = 1 δspec 0.06% 2.12% 0.29% 0.27% 0.27% 0.25% 0.27%
e = 2 δspec 0.17% 2.12% 0.29% 0.27% 0.27% 0.25% 0.27%
e = 1 δvar 0.17% 5.34% 2.55% 2.51% 2.51% 2.48% 2.51%
e = 2 δvar 0.76% 5.33% 2.54% 2.51% 2.51% 2.48% 2.51%

Table 5.9: Difference result right to upper cylinder.

The last investigated source is the internal energy of the bottom face in the left
cylinder. As this face is the one in contact with the floor, which is the original trigger
of the variance in the left cylinders, this part should yield a significant correlation
with the target part. The results are displayed in Tab. 5.10. The performance of
the linear DRM is comparable to the PCA results obtained when subtracting the
displacements of the lower left cylinder, but slightly worse as the delta values are a
little bit smaller. This result is to be expected, as it can be seen from Fig. 5.27.c
that there are not only two, but three substantial modes computed from the energies:
The low dimensional embedding is not a flat semicircle, but a spiral protruding from
the two dimensional plane. Hence, only up to two modes are not enough to describe
the full variance in the source.
When utilising nonlinear DRMs, the results are even closer to the performance on
the first source. Here, the intrinsic one dimensional structure was captured in the
same way, yielding almost identical results to the first test. The only exception to
this similarity is the MLLE method, which performs significantly worse in this case,
especially when only a single mode is subtracted, but not as bad as the linear PCA.

Modes Measure PCA LTSA MLLE Isomap PTU GNLM PTNLM
e = 1 δspec 0.000299% 94.0% 1.13% 94.2% 94.4% 94.3% 94.4%
e = 2 δspec 67.3% 94.0% 92.0% 94.2% 94.4% 94.3% 94.4%
e = 1 δvar 10.5% 99.5% 11.8% 99.6% 99.6% 99.6% 99.6%
e = 2 δvar 86.4% 99.5% 98.7% 99.6% 99.6% 99.6% 99.6%

Table 5.10: Difference result bottom face to upper cylinder.

The above stated findings can be summarised as follows: In this simple simulation
example, the causality was clear and thus, the desired results for the target could be
formulated. For the three candidates, two correlated sources and one uncorrelated
source were investigated.
The correlated sources have shown the problems of the linear DPCA approach, as
the underlying one dimensional dependency between the lower left cylinder and the
upper cylinder could not be confirmed, as the resulting values for δspec and δvar were
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insignificant. On the contrary, the nonlinear DR approaches in combination with
DLAI correctly determined this one dimensional dependency. This dependency was
confirmed in two different quantities: The nodal displacements and the shell internal
energy estimated an almost identical correlation, as they produced very similar values
for the deltas. In this case, the different approaches yielded approximately the same
result, although single methods sometimes deviated from the others.
For the uncorrelated source in the form of the nodal displacement of the right cylinder,
the results of the linear method were as expected as it produced very small values
for δspec and δvar. The nonlinear methods resulted in slightly higher delta values,
which was to some extent expected as they contain more information in fewer modes.
The absolute sizes of the difference measures were still reasonably small for a purely
random dependency.
Overall, the performance on this first simulation data example is satisfactory, as
the nonlinear approaches exceeded the linear method while successfully passing all
performed tests.

5.2.2 Rocker Example

The second simulation data example in this work is the Rocker example, which is a
variant of the original setup initially introduced by Christopher Ortmann in [OS13].
The analysis of this example is closer to the actual application, as the exact de-
pendencies are not known before-hand, but unlike, e.g., a full car application, the
interactions can be derived from the straightforward set-up.

5.2.2.1 Structure of the Data Set

The example in this section is a simplified set-up, derived from a lateral pole impact
of a vehicle as defined by the European New Car Assessment Programme (NCAP)
[Eur19]. It consists of a rocker section that is connected to a short segment of the
seat cross member. A rigid wall with a mass of 85 kg is attached to the far end of
the seat member and the displacements of the nodes at this end are constrained in
all directions except for a translation in y direction. The nodes at the corners of
the rocker section are fixed in z direction, but all other movements are free. Both
the rocker and the seat member have an initial velocity of −29 km/h and move in y
direction towards a rigid pole. A more detailed explanation can be found in [Ort15]
and [OS14]. In these publications, the automated insertion of walls into the inner
part of the rocker is investigated in order to optimise its performance in certain
load cases. The objective for the optimisation is to minimise the rigid wall forces,
and the optimisation method is the so-called Graph and Heuristic Based Topology
Optimization (GHT) [OS13]. In this method, the walls are incrementally inserted into
the topology according to heuristics derived from expert knowledge. The resulting
geometry is visualised in Fig. 5.30.
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Figure 5.30: Initial geometry of the rocker example. The thickness
of the grey PIDs remains fixed, while the coloured inner and outer
wall segments of the rocker are varied in the optimisation process.

In each iteration, multiple insertions generated by different heuristics are evaluated
and the three best results advance to the next iteration, where the heuristics are
applied again, and further insertions are made until the design does not improve any
more. After each insertion and before the next wall is inserted, a Shape and Sizing
Optimization (SSO) is performed, adjusting the parameters of the design. The 360
simulations analysed in this thesis were generated by Dominik Schneider from the
University of Wuppertal and are the runs computed in such a final SSO at the end
of an optimisation. After two GHT iterations, three walls are inserted into the inner
part of the rocker, as shown in Fig. 5.30. The profile of the rocker at this stage
consists of 11 walls with individual thicknesses. The aim of the final SSO is to find
the optimal distribution of these 11 wall thickness values so that the rigid wall forces
are minimal for a given constant mass. This thickness optimisation was conducted
using LS-OPT with a domain reduction strategy [LC20b], meaning that the design
space was adaptively sampled, yielding a concentration of data points towards the
computed optimum. This differs significantly from the other examples featured so
far, where the sample points were evenly distributed in the solution space.
For all 360 evaluation points of the optimisation a simulation was run and a state
written to the result file every 1 ms. These simulations were terminated, once the seat
cross member came to a complete stop, and as this occurred at different times for
the different designs, the number of states available in the results is not identical for
the samples. Thus, the analysis is only conducted up to the last commonly available
state.
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The optimisation varies the wall thicknesses to modify the performance of the rockers
and to find the best in these different behaviours. These differences in behaviour are
visualised in Fig. 5.31. After the initial contact between the rocker and the pole, the
different wall thicknesses affect the deformation of the individual walls, resulting in
variation on the rocker that is smaller in the inner section and increases towards the
corners. The different overall deformation of the rocker affects the displacement of
the seat cross member, which is closer to the pole in some simulations and further
away in others for each fixed state. This varying behaviour of the seat cross member
is relevant to the user from an application point of view: The purpose of the NCAP
pole impact test is to validate the capability of a car to protect the occupants [Eur19],
who are positioned in the seats mounted on this cross member. Hence, its behaviour
and scatter are vital for the test rating.

(b) First state at 0 ms (c) Variation on cross member at 7 ms

(d) Increasing differences at 12 ms (e) Last common state at 14 ms

Figure 5.31: Different states of the first simulation result of the
Rocker example. The colour represents the maximum nodal distance
of the same node at this state amongst all different simulation results.

Crucial to the overall behaviour of the complete model are the three connected walls
inside the rocker. These inner walls were inserted at this position into the original
hollow design by the GHT in order to drastically modify the performance of the
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design in the given optimisation problem. These topology modifications had a better
impact on the outcome than other evaluated changes. Otherwise, this would not have
been the optimal design. These crucial parts also show a large variance in the nodal
displacements as well as the shell internal energy, see Fig. 5.32.

(a) Displacement variation (b) Energy variation

Figure 5.32: Side view of the Rocker example with highlighted differ-
ence. The colour represents the maximum nodal distance in Figure
(a) and the maximum shell internal energy difference in Figure (b),
for the same entity at the same state in different simulation results.

Because of its significance for the application, the variance in the nodal displacements
of the seat cross member is considered as the target for the analysis in this example.
The dependency of this variance to the inner walls of the rocker is investigated by
calculating the correlation to two possible sources: The difference in the nodal dis-
placements and shell internal energies of all three inner walls, where the three PIDs
are considered as one part for the analysis.

5.2.2.2 Selecting the Analysis States

With the target and possible sources fixed, appropriate states must be selected for the
analysis. For this purpose, the importance factors and their development over time
can be utilised, similar to the other example shown before. The development of the
first linear importance factor over time for the variation in the nodal displacements
of the different PIDs is visualised in Fig. 5.33.
For the target part of the seat cross member, the associated curve is monotonically
increasing, with an inclining slope starting shortly after the impact of the rocker and
the pole. State 13 at 12 ms is selected as the target state for the analysis, because
the scatter could unfold but it is not the maximal value for this curve.
Though the three connected inner walls are considered as one part in the analysis,
three individual curves are plotted that show the very similar behaviour in their
displacements: Shortly after the impact of the rocker and the pole in the first state,



130 5 EVALUATION

the difference starts to increase until state 8. As described in Section 4.1.2, the source
state should be chosen before the target state and shortly before maximum of the
curves so that the scatter was able to unfold. Hence, state 7 is used as the source for
the nodal displacements of the inner walls.
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Figure 5.33: Importance of the first mode over time for the nodal
displacements of the left, right and diagonal inner walls of the rocker
and the seat cross member segment.

Fig. 5.34 visualises the development of the first linear importance factor for the dif-
ference in the shell internal energy of the PIDs. These curves are overall comparable
to the curves for the nodal displacements, there are only minor differences.
The curve for the target importance factor still increases monotonically, but the steep-
est ascent is directly after the impact rather than towards the end of the simulation.
However, the importance factors for the three inner walls show different behaviour.
The curve associated with the diagonal wall also increases monotonically, while the
curve corresponding to the right wall has a distinct peak, similar to the curves for
the nodal displacements. Finally, the curve for the left wall can be seen as a mixture
of the other two, as it has a peak, but less prominent than the right wall and shows
an increase over time, similar to the diagonal wall. With the knowledge about the
behaviour of the nodal displacements in mind, the analysis state for the internal en-
ergy source was also chosen as 7, due to the overall development of the importance
factors of the walls.
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Figure 5.34: Importance of the first mode over time for the shell
element internal energy of the four parts in the Rocker example.

With the source and target parts as well as the relevant states for the analysis as
listed in Tab. 5.11, the preconditions for the analysis are complete.

Type Part Quantity State Time
Target Seat cross member Nodal displacements 13 12 ms

Source 1 Inner walls Nodal displacements 7 6 ms
Source 2 Inner walls Shell internal energy 7 6 ms

Table 5.11: List of target and sources for the Rocker example in the
Extended Workflow.

5.2.2.3 Application of the Extended Workflow

In this example, the Extended Workflow is applied from the target point of view.
While investigating the Cylinders example in Section 5.2.1, the source was known
and the analysis was conducted with this knowledge from the source point of view.
In practical applications, however, the target point of view is more common as the
source is usually to be determined.
The DR of the nodal displacements of the seat cross member at state 13 yields an
almost perfect line, which means that the data is very close to a one dimensional
linear manifold as can be seen in Fig. 5.35.c. As the manifold is basically linear, the
PCA can capture the structure sufficiently well.
The virtual simulations for this target are visualised in Fig. 5.36 and show the
difference associated with this mode: The rocker moves in a straight line and is very
close to the pole for simulations on the one end of the mode spectrum and further
away on the other end. As the pole is rigid and the seat member does not deform
noticeably, the inner walls have to give way to this movement of the cross member.
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Thus, a significant correlation between the inner walls and the variance of the seat
cross member displacement is to be expected, though the actual percentage for the
difference measures cannot be stated beforehand.
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Figure 5.35: Low dimensional embeddings of the two investigated
sources in Figures (a) and (b) and the target in Figure (c). The
points are coloured according to their sample number and show the
concentration of the points as they were sampled adaptively during
the converging optimisation process.

To investigate this correlation, the Dimensionality Reduction is first applied to the
two possible sources. The low dimensional embeddings computed by the PCA for the
nodal displacement as well as the shell element internal energy of all three inner walls
considered as one part are visualised in Fig. 5.35.a and Fig. 5.35.b, respectively.

(a) Projection F
(
x−1
)

(b) Projection F
(
x+

1
)

Figure 5.36: Side view of the rocker in the virtual simulation results.
The first mode of the seat cross member shows the segments different
displacement in the y direction. The seat member moves in a straight
line towards the rigid pole while the inner walls deform and give way.
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The Dimensionality Reduction was performed with the nonlinear DRMs as well as for
the linear method and the resulting importance factors for the nodal displacements
of the inner walls computed by the different methods are listed in Tab. 5.12. All
nonlinear methods used a neighbourhood size of k = 13, because tests and the linear
DR results showed that the intrinsic dimension is larger than two, where a size of
k = 10 would be used. The exact intrinsic dimension for this data set is not known
as it is difficult to distinguish between noise and small but valid variance.
All approaches find one very important mode, though the number of less important
but still significant dimensions varies among the methods. While the linear PCA has
a relatively smooth descent of importance factors after the first factor, the nonlinear
methods have different progressions, with the results of MLLE, Isomap and PTU
being closest to the linear factors. Strongly deviating are the LTSA approach, which
has four almost equally important lesser modes with a rather sudden drop afterwards,
and the GNLM and PTNLM methods, where a second very important mode is closer
to the first.
Because of this discrepancy, the difference operations were conducted with two dif-
ferent scenarios: First, only the single most important mode e = 1 of the sources was
subtracted from the target part, as most DRMs determined one outstanding impor-
tance factor. Secondly, the first e = 5 modes were subtracted, as this is the maximum
number of modes, which was still significant for all methods: The importance factor
of the sixth mode of the LTSA approach is too small to be chosen as a valid, non-noise
dimension.

PCA LTSA MLLE Isomap PTU GNLM PTNLM
Imp. factor 1 135.399 116.574 116.581 152.227 133.347 146.868 181.315
Imp. factor 2 25.098 18.125 26.577 24.433 20.270 69.588 124.783
Imp. factor 3 12.024 14.754 16.631 16.065 11.316 29.245 29.678
Imp. factor 4 8.644 14.177 11.680 13.552 6.238 23.376 20.885
Imp. factor 5 6.410 13.008 10.338 8.014 4.271 17.165 10.464
Imp. factor 6 4.554 0.007 8.936 5.957 3.926 15.161 9.828
Imp. factor 7 4.008 0.007 0.001 4.660 3.612 12.412 9.057

Table 5.12: Importance factors for the first seven modes of the inner
rocker walls displacements at state 7, computed by different DRMs.

The difference operation for the two number of modes was performed using the DPCA
method for the linear PCA and the DLAI approach with the aforementioned neigh-
bourhood size of k = 13 for the nonlinear DRMs.
When subtracting the first linear mode of the nodal displacement, the impact is very
minimal as δspec and δvar are very small, as can be seen in Tab. 5.13. Increasing
the number of modes does increase the amount of correlated variance, but not to a
significant extent. This result is not consistent with the expectation that the walls
should have a significant correlation with the movement of the target. Contrary, the
nonlinear methods all obtained higher values for both difference measures for e = 1
as well as for e = 5 modes. It is noteworthy that although the Isomap approach
yields smaller delta values for e = 1 modes, it yields comparably results to the other
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methods for e = 5. Apart from this deviation, the results for the nonlinear DRMs
are of the same magnitude and conclude a relevant correlation between the nodal
displacements of the walls and the seat member.

Modes Measure PCA LTSA MLLE Isomap PTU GNLM PTNLM
e = 1 δspec 0.90% 33.0% 32.9% 7.21% 31.7% 26.3% 26.0%
e = 5 δspec 6.56% 41.2% 32.5% 43.1% 45.9% 32.6% 41.8%
e = 1 δvar 1.79% 55.2% 54.9% 13.9% 53.4% 45.7% 45.2%
e = 5 δvar 12.7% 65.4% 54.4% 67.7% 70.7% 54.6% 66.1%

Table 5.13: Difference result for the nodal displacements of the inner
rocker walls to the displacements of the seat cross member.

A similar investigation was performed, where the target was still the displacement of
the seat member, but the source was chosen as the shell internal energies of the inner
walls. Again, for better comparability, the single e = 1 and the e = 5 largest modes
were subtracted with the same neighbourhood size of k = 13. The corresponding
results are listed in Tab. 5.14. Again, the linear method yields rather small values for
the difference deltas, though larger than those for the nodal displacements, especially
for e = 5. Analogous to the displacements, all nonlinear methods yield higher results
for the difference measures and interestingly, the Isomap approach is again the only
deviating method. But the absolute difference between e = 1 and e = 5 modes is
higher for the internal energies, suggesting an intrinsic dimension that is considerably
greater than one.

Modes Measure PCA LTSA MLLE Isomap PTU GNLM PTNLM
e = 1 δspec 1.5% 16.3% 18.5% 9.08% 16.1% 19.8% 16.2%
e = 5 δspec 16.9% 32.8% 40.0% 62.5% 32.2% 47.9% 32.4%
e = 1 δvar 2.97% 29.9% 33.5% 17.4% 29.5% 35.8% 29.7%
e = 5 δvar 31.0% 54.9% 64% 85.9% 54.1% 72.8% 54.3%

Table 5.14: Difference result for the shell internal energy of the inner
rocker walls to the displacements of the seat cross member.

The Rocker example has shown the capabilities of the new methods for an exam-
ple from a real application that was not specifically constructed for this thesis. It
highlighted the short comings of the linear approach to find the expected correlation
between the inner walls and the seat cross member. The nonlinear methods yielded
higher correlation values and comparable results for the nodal displacements as well as
for the shell internal energies. This supports the assumption of a dependency between
the involved parts. The special sampling structure of the simulation results, which
originates from an incremental optimisation process, showed that the new methods
can also handle data sets with varying sample density. This is important as it poses a
challenge from a DR point of view and can always be encountered in real applications.
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5.2.3 Silverado Example

The last simulation data example featured in this work is the Silverado example,
based on the model already introduced in Section 3. While the previous examples
consisted of few parts, this example is a full car application. The new methods are
here tested in a scenario close that is very close to the application in a practical use
case.
In this complex scenario, dependencies found between different parts of the simula-
tion results are reasoned for, even though other influences can never be completely
excluded. The model itself, but also this specific data set already been used in sev-
eral publications [BJST16], [MSJ20] and the findings from previous work [BST15] are
utilised in this thesis. Some of the already known relations between source and target
parts are reviewed using the developed nonlinear methods. Newly discovered insights
that go beyond the published knowledge are then validated with a plausibility check.

5.2.3.1 Structure of the Data Set

The Silverado data set used in this work is based on the open model published by
the National Crash Analysis Center of the George Washington University [PRMB09],
which is still available for public download from [Nat19]. It models the full-frontal
impact of a 2007 Chevrolet Silverado crashing into a rigid wall barrier at 35 mph,
which is motivated by a US-NCAP test [PRMB09]. The finite element model has
been validated and compared to actual crash test results and has shown to reproduce
the physical behaviour reasonably well [MSCK12]. It is composed of 679 PIDs of
various element types.
The 77 simulations in the example data set used in this work were generated by a
parameter variation, where the element thicknesses of 13 selected PIDs were changed.
The varied parts are highlighted in Fig. 5.37 and a complete list of all changed PIDs
and original element thicknesses can be found in Section B.3 of the appendix. Each
of the original element thicknesses was multiplied with a different random variable
v ∼ U(0.8, 1.2) to induce some variation into the initial design of model and to feign
manufacturing tolerances.
This variation of the elements thicknesses also results in a different crash behaviour in
the simulations, with varying intensity over the crash duration and in different areas of
the car. To capture these variances in detail, a result state was written to the result file
every 1 ms. While these variances are to be expected, the overall performance should
ideally not be affected by parameter changes within the manufacturing tolerance
magnitude. From an application point of view, occupant protection and thus all
parts in the immediate vicinity of the passengers are of special interest. One of the
known crucial parts in this field is the firewall of the car [Nat12]. Among the 77
simulations, this part shows large variation in the displacements of the nodes on the
driver’s side, as can be seen from Fig. 5.38 for an advanced state.
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Figure 5.37: Varied PIDs in the Silverado example: The thicknesses
of the highlighted parts were changed randomly within ±20% of their
original value. The parts are on purpose distributed over the whole
car to yield some thicknesses that have a huge impact on the be-
haviour, but also some with minor influence.

Figure 5.38: Target for the Silverado example: The nodal displace-
ments for the firewall show significant variation, highlighted by the
colour, which indicates the maximum distance for a node in one sim-
ulation to the same node in another simulation at the same state.
The distance exceeds 200 mm for some nodes on the driver’s side.
The displacements of the selected node group are taken as the target
for the analysis.
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This type of challenge is usually the case in practical applications: A crucial part
is showing variation in a significant magnitude and is thus taken as the target for
the analysis, while the origin for this scatter is to be found. While highlighting the
existing variances, together with the engineer’s expertise, can help to identify possi-
ble sources for this scatter, it is important to also check possible correlations before
constructional changes are made.
It is to be expected that the load bearing structures, for example the longitudinal rail,
on the left side of the car have some kind of influence on the behaviour of the firewall
on the driver’s side. In this particular case, the shock rod and the break booster have
also played an important role in previous works [BST15]. For some selected parts on
the driver’s side, the behaviour over time is displayed in Fig. 5.39.
The tow hook on the far left is the first part of the car to make contact with the
rigid barrier. Depending on the individual part thicknesses, the behaviour over time
is different for all the simulations, as the thickness of the displayed longitudinal rail
is amongst the varied ones and as the total mass of the car and its distribution is
affected by the overall combination of different thicknesses. This different behaviour
in the results is noticeable on the longitudinal rail, but very prominent on the other
parts: In some simulations an interlocking of the shock rod and the break booster
can be observed, while they pass each other in different simulations. Whether they
make contact or not determines, whether the break booster is pushed into the firewall
or not, which causes some of the visible variation on the target part. This causality
was already found in [BST15] and should also be reproducible with the nonlinear
methods. Thus, the displacement of this part is taken as a first possible source for
the investigation.
In previous works only the correlation between the same post value, e.g. nodal dis-
placement, on different parts has been investigated. While the variation in the nodal
displacements is very prominent, the difference in the shell element plastic strain
also offers interesting insights: The elements in the longitudinal rail show significant
differences over the duration of the crash and these are visible at a very early stage
when the displacements are still very similar.
A very local effect can be spotted here at the connection between the tow hook and
the rail, where a single triangular element shows very different plastic strain values at
the same state in different simulations. The colour highlighting in Fig. 5.40 helps to
recognise this triangular and its neighbouring mesh elements. The curious position of
a single triangular directly adjacent to a hole in the rail and at the connection to the
hook, combined with these huge differences, raises the question of how big the impact
of this area is. Thus, the plastic strain of the longitudinal rails shell element in the
area of this connection is considered as a second possible source in the analysis.
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(b) Initial part positions at 0 ms (c) After contact with barrier at 8 ms

(d) Rail and rod differences at 37 ms (e) Variation on booster and wall at 67 ms

Figure 5.39: Different states of selected parts in the Silverado in the
first simulation result. The colour represents the maximum nodal dis-
tance of the same node at this state amongst all different simulation
results.

Figure 5.40: Detailed view of the connection between the tow hook
and the longitudinal rail in the Silverado example. The colour indi-
cates the maximum difference in the plastic strain for the element at
the same state in different simulations. The nodes of the elements in
the area of the connection between the two PIDs, which are consid-
ered as the second source for the analysis are highlighted.
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5.2.3.2 Selecting the Analysis States

Once the target and two possible sources for the analysis are identified, the cor-
responding states for the analysis must be selected, similar to the two simulation
examples mentioned before.
Again, the development of the linear importance factors is utilised to determine the
relevant states for the analysis. Although the linear DRM may not capture the ex-
act intrinsic dimension of the problem, it is still useful to determine at what point
variance starts to occur in the data. Fig. 5.41 visualises the development of the first
linear importance factor over time for the selected parts. In addition to the target
nodes of the firewall and the two source parts, which are the break booster and the
elements of the longitudinal rail near the connection to the tow hook, the importance
factors for the tow hook itself and the shock rod are also plotted. This is done to
emphasise the similarity between the curve for the firewall nodes and the curve for
the break booster by demonstrating that development of the importance factors is
not so similar for all selected parts.
The maximum importance factor for the target part of the firewall nodes is reached
at approximately state 80, thus the analysis state is chosen slightly earlier at state
78, as explained in Section 4.1.2.
State 68 is chosen for the source part of the break boosters, since the importance
factors for the nodal displacements of this part show a very similar behaviour as for
the target part, but the source state must be chosen before the target state. Further-
more, the curve for the break booster shows a gradient change until state 62, which
is why the source state should be selected on the rather straight segment of the curve
afterwards.
The development of the first linear importance factors for the plastic strain of the
same parts is plotted in Fig. 5.42. It is obvious from the plots that the difference
in the plastic strain is most prominent in the elements of the longitudinal rail, which
was identified as the second source. These differences occur shortly after the impact
at state 7 and show a steep increase at around state 18. Because of the change in the
ascent, the source state for the plastic strain of the elements in the longitudinal rail
is selected as 9 in order to get the earliest possible and isolated effect.
With the target and possible source parts, with the relevant quantities as well as
corresponding states identified and listed in Tab. 5.15, the Extended Workflow can
be applied to the Silverado example as well.
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Figure 5.41: Importance of the first linear mode over time for the
nodal displacement of selected parts in the Silverado example.
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Figure 5.42: Development of the first importance factor for the plastic
strain of selected parts in the Silverado example as computed with
the linear PCA approach. The very stiff parts such as the tow hook,
the shock rod and the break booster show hardly any plastic strain
and thus hardly any difference, which is why the importance factors
for all three are close to zero.
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Type Part Quantity State Time
Target Fire wall node group Nodal displacements 78 77 ms

Source 1 Break booster Nodal displacements 68 67 ms
Source 2 Longitudinal rail node group Shell plastic strain 9 8 ms

Table 5.15: List of target and sources for the Silverado example in
the Extended Workflow.

5.2.3.3 Application of the Extended Workflow

The Extended Workflow is applied for this example starting from the target point of
view. First, the Dimensionality Reduction Methods are used to determine the intrin-
sic structure of the variance on the displacements of the firewall node group. Tab.
5.16 lists the first nine importance factors for the different DRMs. The neighbour-
hood size was set to k = 10 for all approaches, as this value yielded the best results.
All approaches determined one very important dimension and a varying number of
minor modes, with no more than eight dimensions worth mentioning for the nonlin-
ear methods. The additional minor modes show that the movement of the wall is
more complex than in the other examples investigated before, but the single most
important direction underlines that the behaviour is mostly one dimensional.

DRM PCA LTSA MLLE Isomap PTU GNLM PTNLM
Imp. factor 1 365.229 286.150 296.539 471.007 365.671 468.825 365.099
Imp. factor 2 82.945 83.658 87.752 96.758 81.820 90.924 80.065
Imp. factor 3 67.435 76.512 54.224 64.099 67.176 57.328 65.671
Imp. factor 4 38.522 53.580 53.423 54.926 39.886 47.221 35.155
Imp. factor 5 26.914 34.786 41.582 45.313 2.693 38.448 21.689
Imp. factor 6 20.254 28.682 33.086 19.358 0.141 29.202 13.248
Imp. factor 7 18.131 15.535 25.611 12.883 - 25.820 -
Imp. factor 8 9.404 15.224 12.392 7.608 - 15.147 -
Imp. factor 9 8.370 0.003 0.002 - - - -

Table 5.16: Importance factors for the nodal displacements of the
target firewall segment at state 78 computed by the different DRMs.
An entry of ”-” indicates that the method stopped with fewer dimen-
sions.

Since all DRMs determined that the underlying manifold is essentially one dimen-
sional, the first mode is crucial for the behaviour of the firewall. Fig. 5.43 displays
the selected parts of the virtual simulation results for the first linear mode. The
displayed state shows the interlocking of the shock rod or its housing with the break
booster. Depending on this interlocking, the break booster is pushed into the firewall
or not: In some simulations the former can be observed, in others the latter. Thus,
a significant correlation between the variance of the two parts is to be expected.
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(a) Projection F
(
x−1
)

(b) Projection F
(
x+

1
)

Figure 5.43: State 68 of the virtual simulation results for the first
linear mode of the displacements of the firewall node group. The
difference in the firewall is mainly a translation in x-direction, which
can be seen from the extent of the wall in this side view.

As stated before, this interaction was already found with the linear approach in
[BST15] and is the reason why the break booster’s displacement was chosen as a first
source. In addition to the linear PCA, the nonlinear DRMs were also applied to
the displacement of the break booster at state 68 and the results are listed in Tab.
5.17. Similar as for the target, the number of neighbours was chosen as k = 10 for
all nonlinear approaches as it provided the best results. The calculated importance
factors for the break booster show a large first mode, but also further significant
modes. The actual number of relevant modes varies among the different methods,
but the work in [BST15] showed that subtracting only the first mode already yields
a very strong correlation and hence no further modes need to be subtracted.

DRM PCA LTSA MLLE Isomap PTU GNLM PTNLM
Imp. factor 1 404.785 310.774 336.740 524.286 386.571 521.115 385.624
Imp. factor 2 176.022 184.399 193.035 196.661 181.436 187.504 177.467
Imp. factor 3 74.197 106.557 69.106 88.160 88.143 79.207 86.099
Imp. factor 4 37.988 54.695 49.002 77.980 58.295 62.827 55.606
Imp. factor 5 25.618 44.767 47.843 64.045 1.688 51.463 23.484
Imp. factor 6 11.515 41.755 33.278 5.577 0.001 42.753 15.19
Imp. factor 7 6.475 8.391 25.389 4.197 - 24.139 -
Imp. factor 8 3.364 0.001 0.001 - - - -

Table 5.17: Importance factors for the nodal displacements of the
break booster at state 68 in the Silverado example.

In contrast to the two simulation data examples before, the investigation of the cor-
relation between the parts in this example was performed slightly different:
First, only the e = 1 single largest mode was subtracted and the resulting difference
measures δspec and δvar are listed in Tab. 5.18. Choosing a larger second number
of modes as for the other two data sets is difficult since MLLE, for example, has a
substantial seventh mode, while PTU can subtract at most five modes. Thus, only
the single largest mode among several DRM approaches can be reasonably compared.
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Secondly, for the linear method, both DPCA variants were evaluated. The two vari-
ants are the orthogonal projection-based variant and the τ -modified Gram matrix
variant with the industry standard τ = 10 000, see Section 4.1.3. For the other data
sets, the results were very similar and τ could have been chosen sufficiently large
so that including the modification variant would not have yielded further insights
compared to the orthogonal projection introduced in this work. But, since the inves-
tigation in [BST15] was performed using the modification variant with τ = 10 000, it
is important to include it in this evaluation to reproduce the published results.
The results for the difference deltas confirm the previous findings and what was visu-
ally prominent in the virtual simulations: The correlation between the difference in
the displacements of the break booster at an earlier state and the movement of the
firewall nodes at a slightly later state is very high. When subtracting the first mode,
the linear methods already obtain a reduction of the target variance of δvar ≈ 80%.
The nonlinear methods all yield even higher values, thus confirming a strong corre-
lation between the nodal displacements and concluding the investigation of the first
source.

Measure PCAτ PCA⊥ LTSA MLLE Isomap PTU GNLM PTNLM
δspec 60.8% 61.2% 70.1% 76.8% 86% 77.2% 84.2% 81.8%
δvar 79.8% 80.1% 84.6% 89.9% 95.4% 91% 95.3% 92.9%

Table 5.18: Difference result break booster to wall nodes for the
different DRMs. The nonlinear variants are utilising the DLAI dif-
ference method. The PCA⊥ uses the orthogonal projection based
DPCA and PCAτ the modification variant with τ = 10 000.

The second possible source is the plastic strain of the elements on the front part of
the longitudinal rail at the early state 9 and was newly investigated in this work.
For this post value, the number of neighbours was chosen as k = 6 as the linear
importance factors suggest a one dimensional intrinsic structure. Tab. 5.19 lists the
resulting importance factors. The smaller range of values for the plastic strain and
the earlier state yield much smaller overall importance factors compared to the nodal
displacements: Since the range of values is smaller, the differences are also smaller,
and since the initial geometry of the simulations is the same, the differences start to
unfold over the duration of the crash, so the early state also dampens the differences.
The relative size of the importance factors for the plastic strain compared to each
other essentially indicates an intrinsic dimension of one.
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DRM PCA LTSA MLLE Isomap PTU GNLM PTNLM
Imp. factor 1 0.368 0.354 0.373 0.432 0.387 0.431 0.387
Imp. factor 2 0.081 0.071 0.025 0.051 0.053 0.045 0.052
Imp. factor 3 0.030 0.042 0.019 0.037 0.022 0.034 0.020
Imp. factor 4 0.015 0.024 0.012 0.024 - 0.022 -
Imp. factor 5 0.010 0.0 0.010 0.014 - 0.015 -
Imp. factor 6 0.009 0.0 0.005 0.013 - 0.011 -
Imp. factor 7 0.005 0.0 0.001 0.009 - 0.009 -
Imp. factor 8 0.004 0.0 0.001 0.001 - 0.006 -

Table 5.19: Importance factors for the second source in the Silverado
example. The values are computed using the shell element plastic
strain of at the connection between the longitudinal rail and the tow
hook at state 9.

Because of this intrinsic dimension of one and to increase the comparability to the
previous source part, again only the e = 1 single largest mode is subtracted. The
results of this operation are displayed in Tab. 5.20 and show significant disparities
between the different approaches:
The linear PCAτ method using the τ -based DPCA difference operation with the
industry standard of τ = 10 000 does not yield any significant correlation between
the plastic strain of the source elements and the targets nodal displacements. This
can partially be explained, by the different magnitude of the eigenvalues involved and
the resulting requirements on τ . As the formula derived in Section 4.1.3 of this thesis
yields a required τ of

τ
!
≥ ‖GY‖2

σe
= 365.2292

0.368 ≈ 362 478.865

which means, that the default value of τ is too small for this application. This
emphasises that caution is advised when using the modification variant of DPCA in
connection with quantities of different magnitude.
The linear PCA⊥ approach utilising the orthogonal projection-based DPCA yields
substantially higher difference measures, reducing the target’s variance by almost
half with a δvar = 49.9% and suggesting a strong correlation. From an application
point of view, if half of the variance is correlated with the investigated source, the
analyst might expect at least a second source of scatter.
The nonlinear approaches, on the contrary, all yield δvar reductions of the target’s
variance by more than two thirds and up to 83.2%, which would suffice to qualify as
the only source in practical applications.

Measure PCAτ PCA⊥ LTSA MLLE Isomap PTU GNLM PTNLM
δspec 0.75% 32.0% 60.8% 60.8% 57.3% 46.2% 62.2% 52.2%
δvar 1.73% 49.9% 81.8% 81.7% 79.5% 69.6% 83.2% 75.3%

Table 5.20: Difference result of the different approaches for the el-
ement groups plastic strain as a source and the firewall nodes dis-
placement as a target.



5.2 Performance on Crash Simulation Data 145

The Silverado example has shown that the newly developed methods can also handle
more complex data sets in the scale of full car applications. It has highlighted the
importance of choosing the correct τ when working with the DPCA approach and has
shown the possibilities of the orthogonal projection-based alternative. With regards
to the results from earlier publications, the new methods were able to confirm the
existing findings of a linear dependency. Furthermore, including a different post value,
e.g. plastic strain, can provide additional insights, especially in combination with the
nonlinear methods. As already explained for the Cylinder example in Section 5.2.1.3,
different post values can help to detect an effect at earlier states. In this example, a
nodal variance at state 78 was correlated with a plastic strain difference at an early
state of 9.

5.2.3.4 Plausibility Check

The newly found correlation of the target scatter on the important area of the fire-
wall with a very local effect at a very early state raises the question of whether these
findings are valid or not.
While the other findings of the Cylinders example of Section 5.2.1 were justified con-
structively and the results for the Rocker of Section 5.2.2 could be reasoned for with
the help of the simple structure and the generation by the GHT optimisation, the
results for this complex example can only be validated by a plausibility check.

The findings of the new source revolve around a single triangular element and its
neighbours in a peculiar position near a hole, which has an unusually high post value
variance compared to the other elements in the rail. For practical applications, it is
crucial to find such local areas that have a large impact on the performance of the
simulation.
The mesh structure of the model is used to perform a minimally invasive plausibil-
ity check: The 77 simulation results of the example were generated by varying the
element thicknesses of a baseline design by ±20% within their original value. This
baseline design, as available for download in [Nat19], was simulated once without any
modifications to obtain a reference run. Afterwards, a new model was generated by
taking the same baseline design and introducing a new part, consisting only of the
elements near the connection to the hook, see Fig. 5.44. Without changing any mesh
connectivity or nodal positions, the thickness of this newly introduced part was re-
duced to 80% of the initial rail thickness, matching the minimum of all given samples.
The contacts to all parts were handled in the same manner as for the original rail.
Although further modifications could be done, only this minimal change was made to
have an as local as possible impact on the simulation. The modified design was then
simulated on the identical machine with the same configuration as the reference run.
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(a) Original model (b) Modified model

Figure 5.44: Modification in the element mesh of the Silverado ex-
ample. The node positions and the connectivity of the elements are
untouched, only the thickness of the highlighted elements near the
tow hook was reduced.

As explained in the last section, the behaviour of the break booster correlates strongly
with the variance on the firewall, since in some simulations the booster interlocks with
the shock rod and is thus pushed into the firewall. When inspecting the reference
run for this behaviour, it can be seen, that the two parts do indeed interlock, see Fig.
5.45.a. The simulation with identical connectivity and initial node positions but only
locally minimal changed thicknesses shows no such interlocking, see Fig. 5.45.b.

(a) Original simulation (b) Modified simulation

Figure 5.45: Selected parts at state 68 in the two simulation results
computed for the plausibility check. The modified simulation has a
local change in the initial thicknesses.

This means that the behaviour of the target part in the simulation was qualitatively
changed by modifying the thickness of a small group of elements. These elements
were identified by the new approaches developed in this thesis as having a strong
correlation to the target part, underlining their capabilities to find these unexpected
dependencies. Once identified these dependencies can be utilised to improve an exist-
ing model. In this specific example, the complete connection between the longitudinal
rail and the tow hook, as well as all local geometry, is modelled differently in the newer
2017 variant of the Silverado.
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The plausibility check of the last simulation example concludes the evaluation of the
newly developed methods.

5.3 Recapitulation
In the last sections, the capabilities of the new nonlinear approaches have been demon-
strated and compared to the linear method.

The controlled environment of artificial data sets enabled an individual evaluation of
the two steps of the Extended Workflow and a comparison to the ideal result.
In the first reduction step, all DRMs could handle linear manifolds very well, but only
the nonlinear approaches were able to capture the intrinsic structure of the nonlinear
data sets. The number of possible DRMs for this step was subsequently reduced since
PCA and ENLM yielded redundant results and LLE and MLLE aimed to preserve
similar properties.
In the second step, all these possible DRMs were combined with the difference oper-
ation methods. Here, the linear PCA was always used in combination with the linear
DPCA approach, and all nonlinear DRMs were combined with both the DLLI and
the DLAI method. While all difference operation methods were able to detect linear
dependencies very well, only the nonlinear methods were able to handle nonlinear
dependencies. The investigation of the random dependency showed that the DLLI
method failed to obtain meaningful results for this almost uncorrelated relation, while
the DLAI method performed much better on this example. It is noteworthy that this
chaotic relation is one of the most challenging tests for these methods. Because of
this difference in the performance, the focus of the further evaluations was placed on
the DLAI for nonlinear methods.
Then, the impact of the different methodologies of the DRMs approaches on the DLAI
operation was demonstrated with two nonlinear non-developable manifolds.
Before evaluating the method’s performance on simulation data, it was demonstrated
that additional complexities such as noise or minor violations of the underlying as-
sumptions can be handled by the methods. This heuristic investigation was conducted
for noise levels and differences in the intrinsic dimension, which are usually found in
practical applications.

The complete workflow was then evaluated on three simulation data examples. These
three investigated examples include data from different applications and have an in-
creasing size as well as complexity.
The constructed Cylinders example underlined the limitations of the linear approach
and the benefit of the nonlinear methods. All nonlinear DRMs in combination with
the DLAI obtained almost perfect results.
For the Rocker example, which was simulated during an optimisation process, the lin-
ear DPCA did not find any significant correlation between the source parts and the
target part. This is unexpected because the source parts were specifically inserted
by the optimisation to influence the behaviour of said target part. The nonlinear
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methods found a significant correlation, and while most of the methods obtained
comparable results, the Isomap approach deviated from this majority outcome.
Finally, in the Silverado example, a known linear dependency was confirmed by the
nonlinear methods and a new nonlinear dependency was discovered. This new depen-
dency was additionally confirmed by a plausibility check. Again, most of the DRMs
obtained similar results, but with a slightly wider range than in previous examples.

The deviation of single methods from the majority outcome underlines the need to
use several different approaches in an analysis. If the number of DRMs is to be re-
duced further, the above stated findings recommend to use at least one method from
each class of DRM, because the different classes have different strengths and weak-
nesses. Because of the overall performance, a minimal set of DRMs could be MLLE
for the class of LMs, PTU for the MDS class and anyone of GNLM or PTNLM for
the NLM methods. These nonlinear DRMs in combination with the DLAI difference
operation have shown to reliably identify linear and nonlinear correlations between
the behaviour of different parts in a given set of simulation results.



6 Conclusion
Finally, the investigations and findings in this thesis are summarised and the central
research question is revisited. Conclusively, the limitations of the presented study are
highlighted and opportunities for future work are addressed.

6.1 Summary
Prior work on the Comparative Analysis of simulation results has shown the capabili-
ties of Dimensionality Reduction Methods in these engineering analyses. For example,
in the context of car crash simulation results, where, amongst others, the publications
[BBT13] and [Oka15] have highlighted their benefit in practical applications.
However, the Difference Principal Component Analysis [TNNC10], which is used
by several car manufacturers worldwide to investigate correlations between different
parts of a simulation, is based on a linear Dimensionality Reduction concept, while the
underlying data contains many nonlinearities. Other publications such as [BGIT+13]
and [GIT15] have shown the advantages of nonlinear methods, often concentrating
on one or two approaches and never in combination with the DPCA workflow. The
central research question of this thesis was how the basic idea of this workflow can
be extended to certain nonlinear methods and what functional differences these new
approaches yield.
To answer this question, this thesis combined the two steps Dimensionality Reduction
and Difference Dimensionality Reduction of the DPCA’s Extended Workflow intro-
duced in Section 2.2 with nonlinear DRMs. For the first step of the Dimensionality
Reduction in Chapter 3, several generative nonlinear DRMs approaches were visited
and successfully modified to be used in the CA. These approaches can be struc-
tured in three classes: In the first class of the so-called Local Method approaches the
Locally Linear Embedding, Local Tangent Space Alignment and Modified Locally
Linear Embedding methods were explained in Section 3.3. For the second class of the
Multidimensional Scaling methods the Isomap and Parallel Transport Unfolding were
covered in Section 3.4. The last class comprises the Nonlinear Mapping approaches
of Section 3.5, where the Euclidean Nonlinear Mapping and Graph-Based Nonlinear
Mapping methods were explained, and the Parallel Transport Nonlinear Mapping
was newly introduced. All methods of this first step were extended by nonlinear im-
portance factors and virtual simulation generation to be usable in the analysis and
enhance the results.
For the second step of the difference operation in Chapter 4, the DPCA idea was
first successfully abstracted to the Generalised Difference Dimensionality Reduction
in Section 4.2 to formulate the concept in such a way that it can be transferred to
nonlinear methods. Two specific new implementations of this abstract concept were
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introduced, namely the Difference Local Linear Interpolation and the Difference Lo-
cal Affine Interpolation.
With these modifications, the DPCA concept was extended to generative nonlinear
reduction methods for the first time. The functional properties of these nonlinear
methods were thoroughly tested in Chapter 5, first on artificial examples and then on
simulation result data. In the process, both the DRMs and the difference methods
were evaluated under certain aspects and the results of the different methods were
compared with each other and with the ideal outcome, if known.
The evaluation of the methods has shown that the nonlinear approaches can find cor-
relations between parts that were undiscovered by the linear state-of-the-art-method
in both the constructed examples and the data collected from other applications.
While the results of the different nonlinear methods were often in agreement, individ-
ual approaches sometimes deviated from the majority outcome, which underlines the
importance of utilising several methods rather than focussing on a single approach.
The findings in this thesis extend those of [BST15] and confirm that DRMs can be
utilised to identify dependencies between different parts of a simulation, as the results
for the linear dependency were reproduced. Furthermore, the capabilities of nonlinear
methods in the analysis of simulation results, which were already shown for some of
the approaches in [BGG16], [IT16] and [MSJ20], can now be utilised in this specific
application due to the extensions made in this work.
With these nonlinear methods, correlations between parts were found that would
have gone unnoticed by the linear approach, as the application on all simulation data
examples in Section 5.2 showed. Especially the importance of a small area with a few
elements was correctly identified, as the plausibility check showed that it had a strong
impact on the overall performance of the model, though it was easy to overlook.
This thesis therefore shows that the newly developed methods help to understand
the variation and dependencies in a given set of simulation results and can hence be
utilised in a wide field of applications, e.g. in understanding the solution space of
an optimisation problem as in the Rocker example or in a manufacturing tolerance
motivated parameter variation as in the Silverado example.

6.2 Outlook
Certain aspects or limitations of the presented work motivate future research. First
of all, a finite number of representatives of three classes of DRMs in combination with
two difference methods was investigated in this thesis. Future research could focus
on additional approaches for the Dimensionality Reduction step as well as for the
Difference Dimensionality Reduction operation. With the large number of different
approaches and underlying concepts already available in the literature, e.g. Local
Orthogonality Preservation [LLW+16] or Latent Variable Models [Sau20], many in-
teresting combinations are possible.
A second aspect of the presented work are the assumptions specified in Section 3.1.4.
The brief investigation in Section 5.1.5 covered this topic up to a level that is rel-
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evant for the given examples. Research beyond this level could be an interesting
subject for future work. While the topic of noise in application data is often covered
to some degree in the introductory papers of the different DRMs, most DRMs share
the assumption that the data lies on a single connected manifold of fixed dimension.
Though the recommendation is to treat each component separately, the question on
how to handle mixed dimension data sets in an integrated analysis was raised sev-
eral times, e.g. with the “barbell” in [SR03]. The question is still open for many
approaches and could motivate the development of additional methods.
A further aspect is the composition of target and source for the analysis. In this
work, both source and target have always been a single post value at single state.
Theoretically, more complex combinations are possible, but an in-depth investigation
of these combinations is needed before utilising them in an analysis. While the exten-
sion to multiple states is relatively simple, the combination of different post values,
e.g. nodal displacements and element strains, poses the challenge of equilibrating dif-
ferent metric units. Furthermore, the appropriate instances need to be chosen, which
leads to the last aspect.
Many steps of the presented workflow contain one or several manual components. On
a small scale, this involves, for example, the selection of the number of neighbours to
construct a neighbourhood or the respective state for the analysis. On a larger scale,
the selection of post value and part for source as well as target is also left to the
analyst. Most of these manual interactions could theoretically be automated. During
the research for this work, a simple approach to getting an estimate for the number
of neighbours was utilised, but the presented number was always subsequently chosen
manually. Often the final number of neighbours was identical to the simple estimate
of Section 3.3.2.2, showing that an automation of this step is possible, though further
research on this topic is needed.
The selection of the appropriate post value or part for source and target of the anal-
ysis could also be automated. If the target of the analysis is already known, as in
the case of the Silverado’s firewall or the seat cross member of the Rocker, all pos-
sible sources for this target could be investigated, e.g. by a brute force or heuristic
approach. In the case where the target is also unknown, perhaps the best possible
source for as many targets as possible could be searched, potentially revealing critical
components of a model.
For both approaches, it is crucial to identify dependencies between sources and tar-
gets, which is the purpose of the new methods developed in this work. With further
automation, these new methods and their improved capability to identify correlations
between different parts could provide interesting and encouraging new insights.



A Appendix

A.1 Projected Eigenvalue Decomposition
The LMs of Section 3.3 discard the eigenvector associated with the smallest eigen-
value, because it is assumed that this vector is 1s and the only eigenvector with
eigenvalue 0. In theory, if the local properties do not yield an overdetermined sys-
tem, multiple eigenvectors to the value 0 can exist. In this case, the matrix can be
projected onto the orthogonal complement of the constant 1s vector prior to solving
the eigenvalue system. For this, determine any orthogonal matrix B ∈ Rs×s with:

B = (b1, . . . , bs−1, 1s)

By multiplying the original alignment matrix ΦLM with the rectangular matrix B|s−1
from both sides, the corresponding rows and columns are removed. Then the eigen-
value problem can be solved for this reduced matrix and the eigenvectors can be
projected back into the original domain

w EV of B|Ts−1ΦLMB|s−1

⇒B|s−1 w

to get eigenvectors of ΦLM which are orthogonal to 1s.
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B.1 Summary of Artificial Data Sets
Definition B.1
Plane. fplane : [0, 1]2 → RD

fplane

(
x1
x2

)
:=


3x1 − 1.5
2x2 − 1

0D−2


Definition B.2
S-shape. fsshape : [0, 1]2 → RD, with φsshape : [0, 1]→ R

φsshape(x1) :=
{ 3

4(cos(3πx1)− 1) , x1 >
1
2

−3
4(cos(3πx1)− 1) , x1 ≤ 1

2

fsshape(x) :=


φsshape(x1)
3
4 sin(3πx1)

2x2 − 1
0D−3


Definition B.3
Heated Swissroll with constant offset c ∈ R. fhroll,c : [0, 1]2 → RD, with φhroll : [0, 1]→
R:

φhroll(x2) := 3
2(x2 −

1
2)

fhroll,c(x) :=


2(1 + φhroll(x2)2)

√
x1 + c cos(4π

√
x1 + c)

2(1 + φhroll(x2)2)
√
x1 + c sin(4π

√
x1 + c)

2x2 − 1
0D−3


Definition B.4
Orientable Noise fonoise : [0, 1]0 → RD

fonoise(x) :=



N(0, 1)
...

N(0, i)
...

N(0, D)


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Definition B.5
Petals fpetals : [0, 1]2 → RD, with φpetal,j : [0, 1]2 → R2, j ∈ {1, 2, 3, 4}:

φpetal,1

(
x1
x2

)
:=

 sin
(

2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 1

2

))
sin

(
2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 1

2

)) 
φpetal,2

(
x1
x2

)
:=

 − sin
(

2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 3

2

))
sin

(
2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 3

2

)) 
φpetal,3

(
x1
x2

)
:=

 sin
(

2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 5

2

))
− sin

(
2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 5

2

)) 
φpetal,4

(
x1
x2

)
:=

 sin
(

2
3πx1

)
cos

(
arccos (x1)

(
4x2 − 7

2

))
sin

(
2
3πx1

)
sin

(
arccos (x1)

(
4x2 − 7

2

)) 

fpetals

(
x1
x2

)
:=





φpetal,1

(
x1
x2

)
, 0 ≤ x2 <

1
4

φpetal,2

(
x1
x2

)
, 1

4 ≤ x2 <
1
2

φpetal,3

(
x1
x2

)
, 1

2 ≤ x2 <
3
4

φpetal,4

(
x1
x2

)
, 3

4 ≤ x2 ≤ 1

− cos
(

2
3πx1

)
0D−3


Definition B.6
Disk fdisk : [0, 1]2 → RD:

fdisk

(
x1
x2

)
:=


√
x1 cos (2πx2)√
x1 sin (2πx2)

0D−2


Definition B.7
Two planes ftwoplanes : [0, 1]2 → RD, with φleft, φright : [0, 1]2 → R3:

φleft

(
x1
x2

)
:=


3x1 − 1.75

0
2x2 − 1



φright

(
x1
x2

)
:=


3x1 − 1.25

2x2 − 1
0



ftwoplanes

(
x1
x2

)
:=




φright

(
x1
x2

)
, x1 ≥ 1

2

φleft

(
x1
x2

)
, x1 <

1
2

0D−3





B.2 Creating the Cylinders Example 155

Definition B.8
Shovel fshovel : [0, 1]2 → RD, with φblade, φhandle : [0, 1]2 → R3:

φblade

(
x1
x2

)
:=


−1

5 −
1
4 cos(πx1)

1
4 −

1
4 sin(πx1))

1
2x2 − 1

4



φhandle

(
x1
x2

)
:=


x1 + 1

4x2 − 1
2

0
0



fshovel

(
x1
x2

)
:=




φblade

(
x1
x2

)
, x1 ≥ 1

2

φhandle

(
x1
x2

)
, x1 <

1
2

0D−3



B.2 Creating the Cylinders Example
The Cylinders example introduced in Section 5.2.1 was created using the following
scripts. Since formatting is important for all of these files, white spaces are highlighted
with the special symbol ”␣” and must be replaced when storing these files. First, two
LS-PREPOST [LC20a] command files must be run to create the LS-DYNA input files
floor.k and cylinder.k for the respective components.

B.2.1 Needed Files

The contents of the command files are:
floor.cfile

$#␣LS-PrePost␣command␣file
cemptymodel
meshing␣4pshell␣create␣1␣1␣-75␣-75␣-3.75␣75␣-75␣7.5␣75␣75␣7.5␣-75␣75␣-3.75
ac
meshing␣4pshell␣accept␣1␣1␣1␣floor
ac
genselect␣target␣node
genselect␣clear
genselect␣node␣add␣node␣1/0
genselect␣node␣add␣node␣2/0
genselect␣node␣add␣node␣3/0
genselect␣node␣add␣node␣4/0
spcdata␣createnodeset␣1␣1␣NODESET(SPC)␣1
$genselect␣clear
spcdata␣create␣set␣1␣0␣1␣1␣1␣1␣1␣1
KEYWORD␣INPUT␣1
*MAT_PIECEWISE_LINEAR_PLASTICITY_TITLE
floor_mat
$#␣␣␣␣␣mid␣␣␣␣␣␣␣␣ro␣␣␣␣␣␣␣␣␣e␣␣␣␣␣␣␣␣pr␣␣␣␣␣␣sigy␣␣␣␣␣␣etan␣␣␣␣␣␣fail␣␣␣␣␣␣tdel
␣␣␣␣␣␣␣␣␣1␣7.8500E-9␣2.0000E+5␣␣0.300000␣215.00000␣␣␣␣␣0.0001.0000E+21␣␣␣␣␣0.000
$#␣␣␣␣␣␣␣c␣␣␣␣␣␣␣␣␣p␣␣␣␣␣␣lcss␣␣␣␣␣␣lcsr␣␣␣␣␣␣␣␣vp
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.000
$#␣␣␣␣eps1␣␣␣␣␣␣eps2␣␣␣␣␣␣eps3␣␣␣␣␣␣eps4␣␣␣␣␣␣eps5␣␣␣␣␣␣eps6␣␣␣␣␣␣eps7␣␣␣␣␣␣eps8
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000
$#␣␣␣␣␣es1␣␣␣␣␣␣␣es2␣␣␣␣␣␣␣es3␣␣␣␣␣␣␣es4␣␣␣␣␣␣␣es5␣␣␣␣␣␣␣es6␣␣␣␣␣␣␣es7␣␣␣␣␣␣␣es8
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000
*END
keyword␣updatekind
MAT_PIECEWISE_LINEAR_PLASTICITY
KEYWORD␣INPUT␣1
*SECTION_SHELL
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$#␣␣␣secid␣␣␣␣elform␣␣␣␣␣␣shrf␣␣␣␣␣␣␣nip␣␣␣␣␣propt␣␣␣qr/irid␣␣␣␣␣icomp␣␣␣␣␣setyp
␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣2␣␣1.000000␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣1
$#␣␣␣␣␣␣t1␣␣␣␣␣␣␣␣t2␣␣␣␣␣␣␣␣t3␣␣␣␣␣␣␣␣t4␣␣␣␣␣␣nloc␣␣␣␣␣marea␣␣␣␣␣␣idof␣␣␣␣edgset
␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
*END
keyword␣updatekind
SECTION_SHELL
KEYWORD␣INPUT␣1
*PART
$#␣title
floor
$#␣␣␣␣␣pid␣␣␣␣␣secid␣␣␣␣␣␣␣mid␣␣␣␣␣eosid␣␣␣␣␣␣hgid␣␣␣␣␣␣grav␣␣␣␣adpopt␣␣␣␣␣␣tmid
␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
*END
keyword␣updatekind
PART_PART
save␣outversion␣2
save␣keyword␣"floor.k"
quit

cylinder.cfile
$#␣LS-PrePost␣command␣file
cemptymodel
left
meshing␣cylindersolid␣create␣20.0␣80.0␣16␣5␣0.0␣0.0,0.0,0.0,0.0,1.0
ac
meshing␣cylindersolid␣accept␣2␣10␣10␣cylinder
ac
elgenerate␣shelltype␣2
genselect␣target␣segment
loadstate␣1;
loadquat␣0.707107␣0.0␣0.0␣0.707107;
loadgrot␣1.0␣0.0␣0.0␣0.0␣0.0␣1.0␣0.0␣0.0␣0.0␣0.0␣1.0␣0.0␣0.0␣0.0␣0.0␣1.0␣;
loadzoom␣0.90;
loadeyepos␣0.0␣0.0␣0.0;
loadupvect␣0.0␣1.0␣0.0;
genselect␣element␣add␣region␣in␣0.349554␣0.952775␣0.764801␣1.011599
elgenerate␣shell␣solidface␣3␣330
genselect␣clear
elgenerate␣accept
genselect␣element␣add␣region␣in␣0.318329␣0.047225␣0.716951␣-0.101906
elgenerate␣shell␣solidface␣4␣394
genselect␣clear
elgenerate␣accept
iniveldata␣operationtype␣2
genselect␣target␣node
genselect␣clear
genselect␣node␣add␣part␣2/0
iniveldata␣create␣0␣0␣-10000␣0␣0␣0␣0␣1
genselect␣clear
KEYWORD␣INPUT␣1
*MAT_PIECEWISE_LINEAR_PLASTICITY_TITLE
cylinder_mat
$#␣␣␣␣␣mid␣␣␣␣␣␣␣␣ro␣␣␣␣␣␣␣␣␣e␣␣␣␣␣␣␣␣pr␣␣␣␣␣␣sigy␣␣␣␣␣␣etan␣␣␣␣␣␣fail␣␣␣␣␣␣tdel
␣␣␣␣␣␣␣␣␣2␣7.8500E-9␣2.0000E+5␣␣0.300000␣215.00000␣␣␣␣␣0.0001.0000E+21␣␣␣␣␣0.000
$#␣␣␣␣␣␣␣c␣␣␣␣␣␣␣␣␣p␣␣␣␣␣␣lcss␣␣␣␣␣␣lcsr␣␣␣␣␣␣␣␣vp
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.000
$#␣␣␣␣eps1␣␣␣␣␣␣eps2␣␣␣␣␣␣eps3␣␣␣␣␣␣eps4␣␣␣␣␣␣eps5␣␣␣␣␣␣eps6␣␣␣␣␣␣eps7␣␣␣␣␣␣eps8
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000
$#␣␣␣␣␣es1␣␣␣␣␣␣␣es2␣␣␣␣␣␣␣es3␣␣␣␣␣␣␣es4␣␣␣␣␣␣␣es5␣␣␣␣␣␣␣es6␣␣␣␣␣␣␣es7␣␣␣␣␣␣␣es8
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000
*END
keyword␣updatekind
MAT_PIECEWISE_LINEAR_PLASTICITY
KEYWORD␣INPUT␣1
*SECTION_SOLID_TITLE
cylinder
$#␣␣␣secid␣␣␣␣elform␣␣␣␣␣␣␣aet
␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣0
*END
keyword␣updatekind
SECTION_SOLID
KEYWORD␣INPUT␣1
*SECTION_SHELL_TITLE
cylinder_faces
$#␣␣␣secid␣␣␣␣elform␣␣␣␣␣␣shrf␣␣␣␣␣␣␣nip␣␣␣␣␣propt␣␣␣qr/irid␣␣␣␣␣icomp␣␣␣␣␣setyp
␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣2␣␣1.000000␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣1
$#␣␣␣␣␣␣t1␣␣␣␣␣␣␣␣t2␣␣␣␣␣␣␣␣t3␣␣␣␣␣␣␣␣t4␣␣␣␣␣␣nloc␣␣␣␣␣marea␣␣␣␣␣␣idof␣␣␣␣edgset
␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
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*END
keyword␣updatekind
SECTION_SHELL
KEYWORD␣INPUT␣1
*PART
$#␣title
cylinder
$#␣␣␣␣␣pid␣␣␣␣␣secid␣␣␣␣␣␣␣mid␣␣␣␣␣eosid␣␣␣␣␣␣hgid␣␣␣␣␣␣grav␣␣␣␣adpopt␣␣␣␣␣␣tmid
␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
*END
keyword␣updatekind
PART_PART
KEYWORD␣INPUT␣1
*PART
$#␣title
top
$#␣␣␣␣␣pid␣␣␣␣␣secid␣␣␣␣␣␣␣mid␣␣␣␣␣eosid␣␣␣␣␣␣hgid␣␣␣␣␣␣grav␣␣␣␣adpopt␣␣␣␣␣␣tmid
␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
*END
keyword␣updatekind
PART_PART
KEYWORD␣INPUT␣1
*PART
$#␣title
bottom
$#␣␣␣␣␣pid␣␣␣␣␣secid␣␣␣␣␣␣␣mid␣␣␣␣␣eosid␣␣␣␣␣␣hgid␣␣␣␣␣␣grav␣␣␣␣adpopt␣␣␣␣␣␣tmid
␣␣␣␣␣␣␣␣␣4␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
*END
keyword␣updatekind
PART_PART
KEYWORD␣INPUT␣1
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
$#␣␣␣␣␣cid␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣title
␣␣␣␣␣␣␣␣␣1cylinder_to_top
$#␣␣␣␣ssid␣␣␣␣␣␣msid␣␣␣␣␣sstyp␣␣␣␣␣mstyp␣␣␣␣sboxid␣␣␣␣mboxid␣␣␣␣␣␣␣spr␣␣␣␣␣␣␣mpr
␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣␣␣␣␣fs␣␣␣␣␣␣␣␣fd␣␣␣␣␣␣␣␣dc␣␣␣␣␣␣␣␣vc␣␣␣␣␣␣␣vdc␣␣␣␣penchk␣␣␣␣␣␣␣␣bt␣␣␣␣␣␣␣␣dt
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.0001.0000E+20
$#␣␣␣␣␣sfs␣␣␣␣␣␣␣sfm␣␣␣␣␣␣␣sst␣␣␣␣␣␣␣mst␣␣␣␣␣␣sfst␣␣␣␣␣␣sfmt␣␣␣␣␣␣␣fsf␣␣␣␣␣␣␣vsf
␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
$#␣␣␣␣␣cid␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣title
␣␣␣␣␣␣␣␣␣2cylinder_to_bottom
$#␣␣␣␣ssid␣␣␣␣␣␣msid␣␣␣␣␣sstyp␣␣␣␣␣mstyp␣␣␣␣sboxid␣␣␣␣mboxid␣␣␣␣␣␣␣spr␣␣␣␣␣␣␣mpr
␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣4␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣␣␣␣␣fs␣␣␣␣␣␣␣␣fd␣␣␣␣␣␣␣␣dc␣␣␣␣␣␣␣␣vc␣␣␣␣␣␣␣vdc␣␣␣␣penchk␣␣␣␣␣␣␣␣bt␣␣␣␣␣␣␣␣dt
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.0001.0000E+20
$#␣␣␣␣␣sfs␣␣␣␣␣␣␣sfm␣␣␣␣␣␣␣sst␣␣␣␣␣␣␣mst␣␣␣␣␣␣sfst␣␣␣␣␣␣sfmt␣␣␣␣␣␣␣fsf␣␣␣␣␣␣␣vsf
␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000
*END
keyword␣updatekind
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE

save␣outversion␣2
save␣keyword␣"cylinder.k"
quit

The two created key files are combined in one additional input file to get the basic
solvable input deck.

combine.k
$-------------------------------------------------------------------------------
*KEYWORD
*TITLE
Cylinders␣Example
$-------------------------------------------------------------------------------
$␣Patch␣Contacts
$-------------------------------------------------------------------------------
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
$#␣␣␣␣␣cid␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣title
␣␣␣␣␣␣␣␣␣1floor_to_bottom
$#␣␣␣␣ssid␣␣␣␣␣␣msid␣␣␣␣␣sstyp␣␣␣␣␣mstyp␣␣␣␣sboxid␣␣␣␣mboxid␣␣␣␣␣␣␣spr␣␣␣␣␣␣␣mpr
␣␣␣␣␣␣␣␣␣4␣␣␣␣␣␣␣␣␣1␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣␣␣␣␣fs␣␣␣␣␣␣␣␣fd␣␣␣␣␣␣␣␣dc␣␣␣␣␣␣␣␣vc␣␣␣␣␣␣␣vdc␣␣␣␣penchk␣␣␣␣␣␣␣␣bt␣␣␣␣␣␣␣␣dt
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.0001.0000E+20
$#␣␣␣␣␣sfs␣␣␣␣␣␣␣sfm␣␣␣␣␣␣␣sst␣␣␣␣␣␣␣mst␣␣␣␣␣␣sfst␣␣␣␣␣␣sfmt␣␣␣␣␣␣␣fsf␣␣␣␣␣␣␣vsf
␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
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$#␣␣␣␣␣cid␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣title
␣␣␣␣␣␣␣␣␣2top_to_bottom
$#␣␣␣␣ssid␣␣␣␣␣␣msid␣␣␣␣␣sstyp␣␣␣␣␣mstyp␣␣␣␣sboxid␣␣␣␣mboxid␣␣␣␣␣␣␣spr␣␣␣␣␣␣␣mpr
␣␣␣␣␣␣␣␣␣8␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣␣␣␣␣fs␣␣␣␣␣␣␣␣fd␣␣␣␣␣␣␣␣dc␣␣␣␣␣␣␣␣vc␣␣␣␣␣␣␣vdc␣␣␣␣penchk␣␣␣␣␣␣␣␣bt␣␣␣␣␣␣␣␣dt
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.0001.0000E+20
$#␣␣␣␣␣sfs␣␣␣␣␣␣␣sfm␣␣␣␣␣␣␣sst␣␣␣␣␣␣␣mst␣␣␣␣␣␣sfst␣␣␣␣␣␣sfmt␣␣␣␣␣␣␣fsf␣␣␣␣␣␣␣vsf
␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
$#␣␣␣␣␣cid␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣title
␣␣␣␣␣␣␣␣␣3bottom_to_floor
$#␣␣␣␣ssid␣␣␣␣␣␣msid␣␣␣␣␣sstyp␣␣␣␣␣mstyp␣␣␣␣sboxid␣␣␣␣mboxid␣␣␣␣␣␣␣spr␣␣␣␣␣␣␣mpr
␣␣␣␣␣␣␣␣13␣␣␣␣␣␣␣␣␣9␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣3␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣␣␣␣␣fs␣␣␣␣␣␣␣␣fd␣␣␣␣␣␣␣␣dc␣␣␣␣␣␣␣␣vc␣␣␣␣␣␣␣vdc␣␣␣␣penchk␣␣␣␣␣␣␣␣bt␣␣␣␣␣␣␣␣dt
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.0001.0000E+20
$#␣␣␣␣␣sfs␣␣␣␣␣␣␣sfm␣␣␣␣␣␣␣sst␣␣␣␣␣␣␣mst␣␣␣␣␣␣sfst␣␣␣␣␣␣sfmt␣␣␣␣␣␣␣fsf␣␣␣␣␣␣␣vsf
␣␣1.000000␣␣1.000000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣1.000000␣␣1.000000␣␣1.000000␣␣1.000000
$-------------------------------------------------------------------------------
$␣Read␣Models
$-------------------------------------------------------------------------------
*PARAMETER
R␣an_left␣␣␣␣␣␣␣0.0
R␣an_right␣␣␣␣␣␣0.0
R␣dx_right␣␣␣␣225.0
R␣dz_lower␣␣␣␣␣10.0
R␣dz_upper␣␣␣␣100.0
R␣dy_upper␣␣␣␣-30.0
$␣Floor␣Left
*DEFINE_TRANSFORMATION
␣␣␣␣␣␣1000
$␣option␣&␣␣␣␣␣␣␣dx&␣␣␣␣␣␣␣dy&␣␣␣␣␣␣␣dz&␣␣␣␣␣␣␣px&␣␣␣␣␣␣␣py&␣␣␣␣␣␣␣pz&␣␣␣␣␣angle&
␣␣␣␣ROTATE␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣1.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣&an_left
*INCLUDE_TRANSFORM
floor.k
$#␣␣idnoff␣␣␣␣ideoff␣␣␣␣idpoff␣␣␣␣idmoff␣␣␣␣idsoff␣␣␣␣idfoff␣␣␣␣iddoff
␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣idroff
␣␣␣␣␣␣␣␣␣0
$#␣␣fctmas␣␣␣␣fcttim␣␣␣␣fctlen␣␣␣␣fcttem␣␣␣incout1
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
$#␣␣tranid
␣␣␣␣␣␣1000
$␣Cylinder␣Left␣Lower
*DEFINE_TRANSFORMATION
␣␣␣␣␣␣1001
$␣option␣&␣␣␣␣␣␣␣dx&␣␣␣␣␣␣␣dy&␣␣␣␣␣␣␣dz&
␣␣␣␣TRANSL␣␣␣␣␣␣␣0.0␣␣␣␣␣␣␣0.0␣&dz_lower
*INCLUDE_TRANSFORM
cylinder.k
$#␣␣idnoff␣␣␣␣ideoff␣␣␣␣idpoff␣␣␣␣idmoff␣␣␣␣idsoff␣␣␣␣idfoff␣␣␣␣iddoff
␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣idroff
␣␣␣␣␣␣␣␣␣0
$#␣␣fctmas␣␣␣␣fcttim␣␣␣␣fctlen␣␣␣␣fcttem␣␣␣incout1
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
$#␣␣tranid
␣␣␣␣␣␣1001
$␣Cylinder␣Left␣Upper
*DEFINE_TRANSFORMATION
␣␣␣␣␣␣1002
$␣option␣&␣␣␣␣␣␣␣dx&␣␣␣␣␣␣␣dy&␣␣␣␣␣␣␣dz&
␣␣␣␣TRANSL␣␣␣␣␣␣␣0.0␣&dy_upper␣&dz_upper
*INCLUDE_TRANSFORM
cylinder.k
$#␣␣idnoff␣␣␣␣ideoff␣␣␣␣idpoff␣␣␣␣idmoff␣␣␣␣idsoff␣␣␣␣idfoff␣␣␣␣iddoff
␣␣␣␣␣␣1000␣␣␣␣␣␣1000␣␣␣␣␣␣␣␣␣4␣␣␣␣␣␣␣␣␣4␣␣␣␣␣␣␣␣␣4␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣idroff
␣␣␣␣␣␣␣␣␣0
$#␣␣fctmas␣␣␣␣fcttim␣␣␣␣fctlen␣␣␣␣fcttem␣␣␣incout1
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
$#␣␣tranid
␣␣␣␣␣␣1002
$␣Floor␣Right
*DEFINE_TRANSFORMATION
␣␣␣␣␣␣2000
$␣option␣&␣␣␣␣␣␣␣dx&␣␣␣␣␣␣␣dy&␣␣␣␣␣␣␣dz&␣␣␣␣␣␣␣px&␣␣␣␣␣␣␣py&␣␣␣␣␣␣␣pz&␣␣␣␣␣angle&
␣␣␣␣ROTATE␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣1.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣&an_right
$␣option␣&␣␣␣␣␣␣␣dx&␣␣␣␣␣␣␣dy&␣␣␣␣␣␣␣dz&
␣␣␣␣TRANSL␣&dx_right␣␣␣␣␣␣␣0.0␣␣␣␣␣␣␣0.0
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*INCLUDE_TRANSFORM
floor.k
$#␣␣idnoff␣␣␣␣ideoff␣␣␣␣idpoff␣␣␣␣idmoff␣␣␣␣idsoff␣␣␣␣idfoff␣␣␣␣iddoff
␣␣␣␣␣␣2000␣␣␣␣␣␣2000␣␣␣␣␣␣␣␣␣8␣␣␣␣␣␣␣␣␣8␣␣␣␣␣␣␣␣␣8␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣idroff
␣␣␣␣␣␣␣␣␣0
$#␣␣fctmas␣␣␣␣fcttim␣␣␣␣fctlen␣␣␣␣fcttem␣␣␣incout1
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
$#␣␣tranid
␣␣␣␣␣␣2000
$␣Cylinder␣Right␣Lower
*DEFINE_TRANSFORMATION
␣␣␣␣␣␣2001
$␣option␣&␣␣␣␣␣␣␣dx&␣␣␣␣␣␣␣dy&␣␣␣␣␣␣␣dz&
␣␣␣␣TRANSL␣&dx_right␣␣␣␣␣␣␣0.0␣&dz_lower
*INCLUDE_TRANSFORM
cylinder.k
$#␣␣idnoff␣␣␣␣ideoff␣␣␣␣idpoff␣␣␣␣idmoff␣␣␣␣idsoff␣␣␣␣idfoff␣␣␣␣iddoff
␣␣␣␣␣␣2000␣␣␣␣␣␣2000␣␣␣␣␣␣␣␣␣9␣␣␣␣␣␣␣␣␣9␣␣␣␣␣␣␣␣␣9␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣idroff
␣␣␣␣␣␣␣␣␣0
$#␣␣fctmas␣␣␣␣fcttim␣␣␣␣fctlen␣␣␣␣fcttem␣␣␣incout1
␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣␣␣␣␣0
$#␣␣tranid
␣␣␣␣␣␣2001
$-------------------------------------------------------------------------------
$␣Control␣Cards
$-------------------------------------------------------------------------------
*CONTROL_ENERGY
$#␣␣␣␣hgen␣␣␣␣␣␣rwen␣␣␣␣slnten␣␣␣␣␣rylen
␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣2␣␣␣␣␣␣␣␣␣1
*CONTROL_MPP_IO_NODUMP
*CONTROL_MPP_IO_NOFULL
*CONTROL_TERMINATION
$#␣␣endtim␣␣␣␣endcyc␣␣␣␣␣dtmin␣␣␣␣endeng␣␣␣␣endmas
␣␣0.003000␣␣␣␣␣␣␣␣␣0␣␣␣␣␣0.000␣␣␣␣␣0.000␣␣␣␣␣0.000
$--------------------------------------------------------------------------------
$␣Output
$-------------------------------------------------------------------------------
*DATABASE_BINARY_D3PLOT
$#␣␣␣␣␣␣dt␣␣␣␣␣␣lcdt␣␣␣␣␣␣beam␣␣␣␣␣npltc␣␣␣␣psetid
␣1.0000E-4␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣0
$#␣␣␣ioopt
␣␣␣␣␣␣␣␣␣0
*DATABASE_FORMAT
$#␣␣␣iform␣␣␣ibinary
␣␣␣␣␣␣␣␣␣0␣␣␣␣␣␣␣␣␣1
*END

The variation and simulation of this basic set-up was done with the following Python
script, which can be run by Python2 as well as by Python3.

varyAndSimulate.py
import␣os
from␣random␣import␣random,␣seed

lsdynaExec␣=␣""␣#␣"/home/user/Software/ls-dyna/R8.0.0/ls-dyna_smp_d_r800_x64_redhat59_ifort131"
femzipExec␣=␣""␣#␣"/home/user/Software/femzip/femzip_dyna"
inputFile␣=␣"combine.k"
numberOfIntervals␣=␣90
maxAngle␣=␣180
threads=2

inputFolder␣=␣os.path.dirname(inputFile)
if␣inputFolder␣==␣"":
␣␣␣␣inputFolder␣=␣".."
print("Input:␣"+inputFile)
seed(10)
for␣i␣in␣range(0,numberOfIntervals+1):
␣␣␣␣angle␣=␣i␣*␣maxAngle␣/␣numberOfIntervals
␣␣␣␣angle2␣=␣random()␣*␣maxAngle
␣␣␣␣if␣i␣==␣0:
␣␣␣␣␣␣␣␣angle2␣=␣angle
␣␣␣␣print("Processing␣angle:␣"+str(angle))
␣␣␣␣f␣=␣open(inputFile,␣"r")
␣␣␣␣directoryName␣=␣"run_"+str("%02d"␣%␣(i))
␣␣␣␣if␣not␣os.path.exists(directoryName):
␣␣␣␣␣␣␣␣os.mkdir(directoryName)
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␣␣␣␣os.chdir(directoryName)
␣␣␣␣n␣=␣open("input.k",␣"w")
␣␣␣␣for␣line␣in␣f:
␣␣␣␣␣␣␣␣if␣line[:9]␣==␣"R␣an_left":
␣␣␣␣␣␣␣␣␣␣␣␣line␣=␣"R␣an_left␣␣␣␣␣{:5.1f}\n".format(angle)
␣␣␣␣␣␣␣␣elif␣line[:10]␣==␣"R␣an_right":
␣␣␣␣␣␣␣␣␣␣␣␣line␣=␣"R␣an_right␣␣␣␣{:5.1f}\n".format(angle2)
␣␣␣␣␣␣␣␣n.write(line)
␣␣␣␣f.close()
␣␣␣␣n.close()
␣␣␣␣os.system("cp␣"+str(inputFolder)+"/floor.k␣.")
␣␣␣␣os.system("cp␣"+str(inputFolder)+"/cylinder.k␣.")
␣␣␣␣if␣lsdynaExec␣!=␣"":
␣␣␣␣␣␣␣␣os.system(lsdynaExec␣+␣"␣i=input.k␣NCPU="␣+␣str(threads))
␣␣␣␣␣␣␣␣if␣femzipExec␣!=␣"":
␣␣␣␣␣␣␣␣␣␣␣␣os.system(femzipExec␣+␣"␣-I␣d3plot␣-O␣d3plot.fz␣-C␣../precisions.par␣-X")
␣␣␣␣os.chdir("..")
print("Finished")

B.2.2 Order of Commands

With the above given files stored to a folder, the needed commands are:
lsprepost floor.cfile
lsprepost cylinders.cfile
python varyAndSimulate.py

B.3 Varying the Silverado Example
The thicknesses of the following 13 parts were randomly varied within ±20% of their
original value in the Silverado example:

PID Thickness in mm
2000048 1.051
2000167 3.175
2000168 3.000
2000196 3.000
2000274 2.980
2000293 6.000
2000475 1.800
2000482 2.000
2000484 2.000
2000605 1.529
2000629 3.980
2000665 0.500
2000678 15.000

Table B.1: Silverado PIDs and original thicknesses.
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für Crashlastfälle. Düren, Fachbereich D – Architektur, Bauingenieurwe-
sen, Maschinenbau, Sicherheitstechnik, Bergische Universität Wuppertal,
Dissertation, 2015

[OS13] Ortmann, Christopher ; Schumacher, Axel: Graph and heuristic
based topology optimization of crash loaded structures. In: Structural
and Multidisciplinary Optimization 47 (2013), Nr. 6, S. 839–854

https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.nhtsa.gov/crash-simulation-vehicle-models


LIST OF REFERENCES 169

[OS14] Ortmann, Christopher ; Schumacher, Axel: Branching strategies for
the application of heuristics to the topology optimization of crash loaded
structures. In: Proceedings of the 11th World Congress on Computational
Mechanics (WCCM XI), Barcelona, 2014, S. 20–25

[Pea01] Pearson, Karl: LIII. On lines and planes of closest fit to systems of
points in space. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2 (1901), Nr. 11, S. 559–572

[PHHV08] Porte, J De l. ; Herbst, BM ; Hereman, W ; VanDerWalt, SJ: An
introduction to diffusion maps. In: Proceedings of the 19th Symposium
of the Pattern Recognition Association of South Africa (PRASA 2008),
Cape Town, South Africa, 2008, S. 15–25

[PRMB09] Pradeep, M ; Ritter, M ; Marzougui, D ; Brown, D: Mod-
eling, testing, and validation of the 2007 Chevy Silverado finite ele-
ment model. In: Transportation Research Board 89th Annual Meeting,
CDROM, TRB, Washington, DC, USA, 2009, S. 1–18
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